Physiochemical Controls on the Horizontal Exchange of Blue Carbon Across the Salt Marsh‐Tidal Channel Interface

Author:

Fettrow Sean1ORCID,Jeppi Virginia1,Wozniak Andrew2ORCID,Vargas Rodrigo1ORCID,Michael Holly34ORCID,Seyfferth Angelia L.1ORCID

Affiliation:

1. Department of Plant and Soil Sciences University of Delaware Newark DE USA

2. School of Marine Science and Policy University of Delaware Lewes DE USA

3. Department of Earth Sciences University of Delaware Newark DE USA

4. Department of Civil and Environmental Engineering University of Delaware Newark DE USA

Abstract

AbstractTidal channels are biogeochemical hotspots that horizontally exchange carbon (C) with marsh platforms, but the physiochemical drivers controlling these dynamics are poorly understood. We hypothesized that C‐bearing iron (Fe) oxides precipitate and immobilize dissolved organic carbon (DOC) during ebb tide as the soils oxygenate, and dissolve into the porewater during flood tide, promoting transport to the channel. The hydraulic gradient physically controls how these solutes are horizontally exchanged across the marsh platform‐tidal channel interface; we hypothesized that this gradient alters the concentration and source of C being exchanged. We further hypothesized that trace soil gases (i.e., CO2, CH4, dimethyl sulfide) are pushed out of the channel bank as the groundwater rises. To test these hypotheses, we measured porewater, surface water, and soil trace gases over two 24‐hr monitoring campaigns (i.e., summer and spring) in a mesohaline tidal marsh. We found that Fe2+ and DOC were positively related during flood tide but not during ebb tide in spring when soils were more oxidized. This finding shows evidence for the formation and dissolution of C‐bearing Fe oxides across a tidal cycle. In addition, the tidal channel contained significantly (p < 0.05) more terrestrial‐like DOC when the hydraulic gradient was driving flow toward the channel. In comparison, the channel water was saltier and contained significantly (p < 0.05) more marine‐like DOC when the hydraulic gradient reversed direction. Trace gas fluxes increased with rising groundwater levels, particularly dimethyl sulfide. These findings suggest multiple physiochemical mechanisms controlling the horizontal exchange of C at the marsh platform‐tidal channel interface.

Funder

National Science Foundation

Publisher

American Geophysical Union (AGU)

Subject

Paleontology,Atmospheric Science,Soil Science,Water Science and Technology,Ecology,Aquatic Science,Forestry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3