Assessing the Deep Carbon Release in an Active Volcanic Field Using Hydrochemistry, δ13CDIC and Δ14CDIC

Author:

Zhong Jun1,Wang Linan1,Caracausi Antonio23ORCID,Galy Albert4ORCID,Li Si‐Liang1ORCID,Wang Wanfa5,Zhang Maoliang1ORCID,Liu Cong‐Qiang1,Liu Guo‐Ming6ORCID,Xu Sheng1ORCID

Affiliation:

1. Institute of Surface‐Earth System Science School of Earth System Science Tianjin University Tianjin China

2. Istituto Nazionale di Geofisica e Vulcanologia – Sezione di Palermo Palermo Italy

3. Departamento de Geología Universidad de Salamanca Salamanca Spain

4. UL‐CNRS‐CRPG Vandœuvre‐l`es‐Nancy France

5. College of Resources and Environmental Engineering Key Laboratory of Karst Georesources and Environment Ministry of Education Guizhou University Guiyang China

6. Changbaishan Tianchi Volcano Observatory Antu China

Abstract

AbstractVolcanic activities have great implications on the geological carbon cycle, and ascertaining the deep carbon contribution in the Earth's surface that runs along the volcanic edifices is important to understand the relationship between solid Earth degassing and global climate change. This study reports analytical results of major dissolved ions concentrations, carbon isotopic compositions (δ13CDIC and Δ14CDIC) of dissolved inorganic carbon (DIC) of rivers, cold springs, and hot springs from Changbaishan volcanic area, Northeast China. The hydrothermal fluids had a significant impact on solutes budgets, as well as carbon isotopes for the rivers. The changes in concentrations of major ions are mainly controlled by mixing of high‐temperature water/rock interaction and low‐temperature water/rock interaction, and low‐temperature water/rock interaction can be explained by the change of chemical composition between volcanic cone (trachyte) and basaltic shield. Because Δ14CDIC is conservative to CO2 outgassing, we used Δ14CDIC to figure out the contributions of deep carbon and surface carbon. While δ13CDIC is sensitive to CO2 outgassing, we thus estimated the minimum deep CO2 outgassing yield (1.24 × 104 t C yr−1) based on DIC flux corrected for outgassing by a Rayleigh model. In the Changbaishan volcanic area, deep carbon release flux was higher than CO2 consumption flux by silicate weathering, while the deep CO2 outgassing flux was an underestimate, consistent with the hypothesis that deep CO2 release regulates climate on geological timescales. This study calls for a better understanding of the effects of volcanic activities on Earth's surface carbon cycling, which has great implications on studying global climate change.

Publisher

American Geophysical Union (AGU)

Subject

Paleontology,Atmospheric Science,Soil Science,Water Science and Technology,Ecology,Aquatic Science,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3