Investigation of the formation and variability of dissolved inorganic carbon and dissolved organic carbon in the water of a small river (on the example of the Styr River, Ukraine)

Author:

Biedunkova Olha1,Kuznietsov Pavlo1

Affiliation:

1. National University of Water and Environmental Engineering

Abstract

Abstract

This paper presents the results of a study on the dynamics in the concentrations of dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC) in water samples collected from the Styr River between 2019 and 2022. The concentrations of DIC and DOC were measured using an Elementar liqui TOC II analyzer. The study methodology involved analyzing the changes in DIC and DOC concentrations and their relationship with flow rates, temperature, seasonality, and other indicators such as hydrogen pH levels, total alkalinity (TA), and total dissolved solids (TDS). The purpose of this article is to identify patterns in the formation and changes of DIC and DOC concentrations in the Styr River. The concentrations of DIC and DOC in the samples ranged from 1.55-4.93 mM and 0.49-1.43 mM, respectively, with DOC accounting for an average of 22% of the total dissolved carbon content. The highest DOC concentrations were observed in summer, while the highest DIC concentrations were observed in winter. Based on the results, it can be concluded that water flow and temperature have an impact on DOC concentration, while flow, temperature, and pH affect DIC concentration. There was no correlation between DIC and DOC concentrations, but a strong positive relationship (r=0.9056, p<0.001) was found between DIC and TA concentrations. Therefore, the main factors influencing DIC in the Styr River are those that affect the carbonate equilibrium, such as leaching of carbonate and silicate rocks, CO2 absorption from the atmosphere, and changes in pH. Additionally, the concentration of DOC is influenced by biological activity and is higher during the warm season. These findings can be used to develop a strategy for managing water resources in the Styr River basin and to assess and predict the ecological state of the river.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3