Developing Tailored Data Combination Strategies to Optimize the SuperCam Classification of Carbonate Phases on Mars

Author:

Veneranda M.1ORCID,Manrique J. A.12ORCID,Lopez‐Reyes G.1ORCID,Julve‐Gonzalez S.1ORCID,Rull F.1,Alvarez Llamas C.3ORCID,Delgado Pérez T.3ORCID,Gibbons E.4,Clavé E.5ORCID,Cloutis E.6ORCID,Huidobro J.7ORCID,Castro K.7ORCID,Madariaga J. M.7ORCID,Randazzo N.8,Brown A.9ORCID,Willis P.10ORCID,Maurice S.2,Wiens R. C.11ORCID

Affiliation:

1. Research Group ERICA Universidad de Valladolid Valladolid Spain

2. Université de Toulouse 3 Paul Sabatier CNRS CNES Toulouse France

3. Universidad de Malaga Malaga Spain

4. McGill University Montreal QC Canada

5. Centre Lasers Intenses et Applications CNRS CEA Université de Bordeaux Bordeaux France

6. University of Winnipeg Winnipeg MB Canada

7. University of Basque Country UPV/EHU Leioa Bilbao Spain

8. University of Alberta Edmonton AB Canada

9. Plancius Research Severna Park MD USA

10. Jet Propulsion Laboratory California Institute of Technology Pasadena CA USA

11. Purdue University West Lafayette IN USA

Abstract

AbstractThe SuperCam instrument onboard the Mars 2020 Perseverance rover investigates Martian geological targets by a combination of multiple spectroscopic techniques. As Raman, Visible‐Infrared Spectroscopy, and Laser‐Induced Breakdown Spectroscopy (LIBS) spectra deliver complementary information about the interrogated sample, the multivariate analysis of combined spectroscopic data sets is here proposed as a tool to optimize the SuperCam capability to discriminate mineral phases on Mars. For this purpose, the laboratory study of carbonate phases within the Ca‐Mg‐Fe ternary system were selected as representative case of study. After the characterization of model samples, the discrimination capability of mono analytical Raman, VISIR, and LIBS data sets was evaluated by applying a chemometric approach based on the combination of principal component analysis (for sample clustering) and Linear Discriminant Analysis (for mineral classification). Afterward, the low‐level combination (LL) of Raman, VISIR, and LIBS data was achieved by concatenating their spectra into a single data matrix. The mineral classification achieved by LL data sets outperformed the mono analytical ones, thus proving the complementarity between molecular and elemental spectroscopic techniques. Mineral classification was further improved by using a mid‐level data combination strategy. After evaluating benefits and limitations afforded by the proposed combination strategies, future developments are finally outlined. As such, the final objective of this research line is to develop a classification model based on data combination to optimize the capability of SuperCam in discriminating relevant minerals on Mars, this being a key requirement for the selection of the optimal targets to be cached for the future Mars Sample Return Mission.

Funder

Ministerio de Economía y Competitividad

Natural Sciences and Engineering Research Council of Canada

Canadian Space Agency

National Aeronautics and Space Administration

Publisher

American Geophysical Union (AGU)

Subject

General Earth and Planetary Sciences,Environmental Science (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3