Machine learning methods applied to combined Raman and LIBS spectra: Implications for mineral discrimination in planetary missions

Author:

Julve‐Gonzalez Sofía1ORCID,Manrique Jose A.12ORCID,Veneranda Marco1ORCID,Reyes‐Rodríguez Iván1,Pascual‐Sanchez Elena1,Sanz‐Arranz Aurelio1,Konstantinidis Menelaos3,Lalla Emmanuel A.34,Charro María E.1,Rodriguez‐Gutiez Eduardo1,Lopez‐Rodríguez José M.1,Sanz‐Requena José F.1,Delgado‐Iglesias Jaime1,Gonzalez Manuel A.1,Rull Fernando1,Lopez‐Reyes Guillermo1ORCID

Affiliation:

1. ERICA Research Group Universidad de Valladolid (UVa) Valladolid Spain

2. Université de Toulouse 3 Paul Sabatier, CNRS, CNES Toulouse France

3. Centre for Research in Earth and Space Science York University Toronto Ontario Canada

4. Canandensys Aerospace Corporation Bolton Ontario Canada

Abstract

AbstractThe combined analysis of geological targets by complementary spectroscopic techniques could enhance the characterization of the mineral phases found on Mars. This is indeed the case with the SuperCam instrument onboard the Perseverance rover. In this framework, the present study seeks to evaluate and compare multiple machine learning techniques for the characterization of carbonate minerals based on Raman‐LIBS (Laser‐Induced Breakdown Spectroscopy) spectroscopic data. To do so, a Ca‐Mg prediction curve was created by mixing hydromagnesite and calcite at different concentration ratios. After their characterization by Raman and LIBS spectroscopy, different multivariable machine learning (Gaussian process regression, support vector machines, ensembles of trees, and artificial neural networks) were used to predict the concentration ratio of each sample from their respective datasets. The results obtained by separately analyzing Raman and LIBS data were then compared to those obtained by combining them. By comparing their performance, this work demonstrates that mineral discrimination based on Gaussian and ensemble methods optimized the combine of Raman‐LIBS dataset outperformed those ensured by Raman and LIBS data alone. This demonstrated that the fusion of data combination and machine learning is a promising approach to optimize the analysis of spectroscopic data returned from Mars.

Funder

Agencia Estatal de Investigación

Ministerio de Economía y Competitividad

European Commission

Publisher

Wiley

Subject

Spectroscopy,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. GeoRaman 2022;Journal of Raman Spectroscopy;2023-10-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3