An Object‐Based Approach to Differentiate Pores and Microfractures in Petrographic Analysis Using Explainable, Supervised Machine Learning

Author:

Jayachandran Issac Sujay Anand John12ORCID,Gibbs Holly Catherine34ORCID,Laya Juan Carlos1,Qaiser Yemna2ORCID,Khan Talha2ORCID,Ansari Mohammed Ishaq Mohammed Shoeb5ORCID,Ansari Mohammed Yaqoob5ORCID,Malyah Mohammed2,Alyafei Nayef2ORCID,Seers Thomas Daniel12

Affiliation:

1. Department of Geology & Geophysics Texas A&M University College Station TX USA

2. Department of Petroleum Engineering Texas A&M University Qatar Education City Doha Qatar

3. Department of Biomedical Engineering Texas A&M University College Station TX USA

4. Microscopy and Imaging Center Texas A&M University College Station TX USA

5. Department of Electrical & Computer Engineering Texas A&M University at Qatar Education City Doha Qatar

Abstract

AbstractPetrographic observations are vital for carbonate pore‐typing, linking geological frameworks to petrophysical behavior. However, current petrographic pore typing is manual, with the qualitative to semi‐quantitative results not easily fitted into quantitative subsurface characterization. Some recent studies have automated this process using supervised machine learning (ML) and deep learning (DL), focusing on simple pore morphological features, and have reported high classification accuracies for several complex pore types. However, there are concerns about the validity of these studies due to conceptual and technical flaws in their collective approach. This study was aimed at a more fundamental problem, classifying between open microfractures and open pores in petrographic thin sections using an object‐based approach and explainable supervised ML. We analyzed 18 carbonate thin sections from the USA, numerically representing them using five shape features: compactness, aspect ratio, extent, solidity, and formfactor. Using a labeled data set of 400 microfractures and 400 pores, we evaluated nine of the most widely used supervised models. All models showed high testing accuracies (89.58%–90.42%). Interestingly, complex non‐linear models did not significantly outperform simpler linear ones. Compactness and aspect ratio were the most informative features. However, the labeled data sets did not reflect the overall data set's complexity, which suggested that high accuracies in similar studies might be due to curated data sets rather than accounting for the true complexity of carbonate pore systems. The study concludes that simple shape features are ineffective for classifying carbonate pore types. It is hoped that this study will provide a foundation for more robust artificial intelligence‐assisted pore typing.

Funder

Qatar National Research Fund

Publisher

American Geophysical Union (AGU)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3