Machine‐Learning Reveals Equifinality in Drivers of Stream DOC Concentration at Continental Scales

Author:

Underwood Kristen L.12ORCID,Rizzo Donna M.12,Hanley John P.3,Sterle Gary4,Harpold Adrian4ORCID,Adler Thomas5,Li Li6ORCID,Wen Hang6,Perdrial Julia N.25ORCID

Affiliation:

1. Department of Civil and Environmental Engineering The University of Vermont VT Burlington USA

2. GUND Institute for Environment The University of Vermont Burlington VT USA

3. Department of Microbiology and Molecular Genetics The University of Vermont VT Burlington USA

4. Department of Natural Resources and Environmental Science University of Nevada, Reno NV Reno USA

5. Department of Geography and Geosciences The University of Vermont VT Burlington USA

6. Department of Civil & Environmental Engineering The Pennsylvania State University PA University Park USA

Abstract

AbstractResearch at long‐term catchment monitoring sites has generated a great volume, variety, and velocity of data for analysis of stream water chemistry dynamics. To harness the potential of these big data and extract patterns that are indicative of underlying functional relationships, machine learning tools have advantages over traditional statistical methods, and are increasingly being applied for dimension reduction, feature extraction, and trend identification. Still, as examples of complex systems, catchments are characterized by multivariate factor interactions and equifinality that are not easily identified by most machine‐learning methods. Using dissolved organic carbon (DOC) dynamics as an illustration, we applied a new evolutionary algorithm (EA) to extract geologic, topographic, meteorologic, hydrologic, and land use attributes that were correlated to mean stream DOC concentration in forested catchments distributed across the continental United States. The EA reduced dimensionality of our attribute dataset to identify the combination of factors, and their specific value ranges, that interacted to drive membership in High or Low mean DOC clusters. High mean DOC concentrations were associated with two distinct geographic locations of variable climatic and vegetative conditions, indicating equifinality. Our findings underscore the importance of critical zone structure in mediating hydrological and biogeochemical processes to govern DOC dynamics at the catchment scale. This multi‐scale, pattern‐to‐process approach is being applied to refine hypotheses for process‐based modeling of DOC dynamics in forested headwater streams at catchment to site scales.

Funder

National Science Foundation

Publisher

American Geophysical Union (AGU)

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3