CAMELS-Chem: augmenting CAMELS (Catchment Attributes and Meteorology for Large-sample Studies) with atmospheric and stream water chemistry data

Author:

Sterle GaryORCID,Perdrial Julia,Kincaid Dustin W.,Underwood Kristen L.,Rizzo Donna M.ORCID,Haq Ijaz UlORCID,Li LiORCID,Lee Byung Suk,Adler Thomas,Wen HangORCID,Middleton Helena,Harpold Adrian A.ORCID

Abstract

Abstract. Large sample datasets are transforming the catchment sciences, but there are few off-the-shelf stream water chemistry datasets with complementary atmospheric deposition, streamflow, meteorology, and catchment physiographic attributes. The existing CAMELS (Catchment Attributes and Meteorology for Large-sample Studies) dataset includes data on topography, climate, streamflow, land cover, soil, and geology across the continental US. With CAMELS-Chem, we pair these existing attribute data for 516 catchments with atmospheric deposition data from the National Atmospheric Deposition Program and water chemistry and instantaneous discharge data from the US Geological Survey over the period from 1980 through 2018 in a relational database and corresponding dataset. The data include 18 common stream water chemistry constituents: Al, Ca, Cl, dissolved organic carbon, total organic carbon, HCO3, K, Mg, Na, total dissolved N, total organic N, NO3, dissolved oxygen, pH (field and lab), Si, SO4, and water temperature. Annual deposition loads and concentrations include hydrogen, NH4, NO3, total inorganic N, Cl, SO4, Ca, K, Mg, and Na. We demonstrate that CAMELS-Chem water chemistry data are sampled effectively across climates, seasons, and discharges for trend analysis and highlight the coincident sampling of stream constituents for process-based understanding. To motivate their use by the larger scientific community across a variety of disciplines, we show examples of how these publicly available datasets can be applied to trend detection and attribution, biogeochemical process understanding, and new hypothesis generation via data-driven techniques.

Funder

National Science Foundation

Publisher

Copernicus GmbH

Reference64 articles.

1. Addor, N., Newman, A. J., Mizukami, N., and Clark, M. P.: The CAMELS data set: catchment attributes and meteorology for large-sample studies, Hydrol. Earth Syst. Sci., 21, 5293–5313, https://doi.org/10.5194/hess-21-5293-2017, 2017.

2. Adler, T., Underwood, K. L., Rizzo, D. M., Harpold, A., Sterle, G., Li, L., Wen, H., Stinson, L., Bristol, C., Stewart, B., Lini, A., Perdrial, N., and Perdrial, J. N.: Drivers of Dissolved Organic Carbon Mobilization From Forested Headwater Catchments: A Multi Scaled Approach, Front. Water, 3, https://doi.org/10.3389/frwa.2021.578608, 2021.

3. Alvarez-Garreton, C., Mendoza, P. A., Boisier, J. P., Addor, N., Galleguillos, M., Zambrano-Bigiarini, M., Lara, A., Puelma, C., Cortes, G., Garreaud, R., McPhee, J., and Ayala, A.: The CAMELS-CL dataset: catchment attributes and meteorology for large sample studies – Chile dataset, Hydrol. Earth Syst. Sci., 22, 5817–5846, https://doi.org/10.5194/hess-22-5817-2018, 2018.

4. Anderson, I., Hanley, J. P., M. Rizzo, D., Huston D. R., and Dewoolkar, M. M.: Evaluating Damage to Vermont Bridges by Hurricane Irene with Multivariate Bridge Inspection and Stream Hydrogeologic Data, J. Bridge. Eng., 25, 04020083, https://doi.org/10.1061/(ASCE)BE.1943-5592.0001603, 2020.

5. Arora, B., Kuppel, S., Wellen, C., Oswald, C., Groh, J., Payandi-Rolland, D., Stegen, J., and Coffinet, S.: Building Cross-Site and Cross-Network collaborations in critical zone science, J. Hydrol., 618, 129248, https://doi.org/10.1016/j.jhydrol.2023.129248, 2023.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3