On‐Line Warning System for Pipe Burst Using Bayesian Dynamic Linear Models

Author:

Henriques‐Silva Renato1ORCID,Duchesne Sophie2ORCID,St‐Gelais Nicolas Fortin3,Saran Naysan3,Schmidt Alexandra M.1ORCID

Affiliation:

1. Department of Epidemiology, Biostatistics and Occupational Health McGill University Montreal QC Canada

2. Research Centre on Water, Earth, and the Environment Institut National de La Recherche Scientifique (INRS) Quebec City QC Canada

3. CANN Forecast Montreal QC Canada

Abstract

AbstractPipe breaks are a recurrent problem in water distribution networks and detecting them quickly is crucial to minimize the economic and environmental costs for municipalities. This study presents a burst detection methodology applying Bayesian dynamic linear models (DLMs) on water flow time series combined with an outlier monitoring tool. The model is used to characterize the actual flow and, for each time, a one‐step ahead forecast distribution is obtained recursively before moving onto the next observation. The outlier detection method consists of comparing the main model with an alternative one wherein the mean flow is shifted to a higher value (as bursts tend to increase flow) to evaluate which model best fit the observed data. If the alternative model is favored, a burst alarm is issued. To verify the performance of this approach, the DLM and monitoring tool were applied on 2 yr of flow data from two district meter areas (DMAs) in Halifax (Canada), and a historical break data set is used to assess model accuracy. The model was able to detect up to 75% and 71.2% of the pipe breaks, with a false alarm rate of 5.15% and 12% in the first and second DMA, respectively. Finally, the proposed model allows for straightforward interpretation of model parameters, nonlinear relationship between flow and predictors of interest, naturally describes the uncertainty for future predictions, can easily accommodate missing values and can be tuned to maximize break detection or minimize false alarm rates to adapt to specific objectives of water infrastructure managers.

Funder

Mitacs

Publisher

American Geophysical Union (AGU)

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3