Heuristic burst detection method using flow and pressure measurements

Author:

Bakker M.12,Vreeburg J. H. G.34,Van De Roer M.5,Rietveld L. C.1

Affiliation:

1. Faculty of Civil Engineering and Geosciences, Delft University of Technology, P.O. Box 5048, 2600 GA Delft, The Netherlands

2. Royal HaskoningDHV B.V., P.O. Box 1132, 3800 BC Amersfoort, The Netherlands

3. Sub-Department of Environmental Technology, Wageningen University, P.O. Box 17, 6700 AA Wageningen, The Netherlands

4. KWR Watercycle Research Institute, P.O. Box 1072, 4330 BB Nieuwegein, The Netherlands

5. Dunea Duin & Water, P.O. Box 756, 2700 AT, Zoetermeer, The Netherlands

Abstract

Pipe bursts in a drinking water distribution system lead to water losses, interruption of supply, and damage to streets and houses due to the uncontrolled water flow. To minimize the negative consequences of pipe bursts, an early detection is necessary. This paper describes a heuristic burst detection method, which continuously compares measured and expected values of water demands and pressures. The expected values of the water demand are generated by an adaptive water demand forecasting model, and the expected values of the pressures are generated by a dynamic pressure drop – demand relation estimator. The method was tested off-line on a historic dataset of 5 years of water flow and pressure data in three supply areas (with 650, 11,180 and 130,920 connections) in the western part of the Netherlands. In the period 274 bursts were reported of which, based on the definition we propose in this paper, 38 were considered as relatively larger bursts. The method was able to detect 50, 25.9 and 7.8% in the considered areas related to all bursts, and around 80% in all three areas related to the subset of relatively larger bursts. The method generated false alarms on 3% of the evaluated days on average.

Publisher

IWA Publishing

Subject

Atmospheric Science,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3