Aerosol Impacts on Storm Electrification and Lightning Discharges Under Different Thermodynamic Environments

Author:

Sun Mengyu123ORCID,Qie Xiushu13ORCID,Mansell Edward R.4ORCID,Liu Dongxia1ORCID,Yair Yoav5ORCID,Fierro Alexandre O.6,Yuan Shanfeng1ORCID,Lu Jingyu13ORCID

Affiliation:

1. Key Laboratory of Middle Atmosphere and Global Environment Observation Institute of Atmospheric Physics Chinese Academy of Sciences Beijing China

2. State Key Laboratory of Remote Sensing Science College of Global Change and Earth System Science Beijing Normal University Beijing China

3. College of Earth and Planetary Sciences University of Chinese Academy of Sciences Beijing China

4. NOAA/National Severe Storms Laboratory Norman OK USA

5. School of Sustainability Reichman University Herzliya Israel

6. Zentralanstalt für Meteorologie und Geodynamik Department of Forecasting Models‐ZAMG Vienna Austria

Abstract

AbstractThe impacts of aerosol and thermodynamics on electrification and lightning activities have been investigated in detail using the Weather Research and Forecasting Model coupled with a double‐moment microphysics parameterization and an explicit electrification lightning scheme. To obtain a varied combination of convective available potential energy (CAPE) values and aerosol concentrations, a sounding was modified consistently and initiated with five sets of aerosol concentrations that served as cloud condensation nuclei. The simulated electric processes respond to the varying dynamical and microphysical characteristics associated with the different CAPE and aerosol conditions. Under high CAPE circumstances, the augmentation of ice‐phase particle leads to the enhancement of non‐inductive charging primarily through the dynamic processes. Increased aerosol content further invigorates the electrification through microphysical processes. Elevated aerosol loading under low CAPE conditions increases cloud droplet and ice crystal numbers. Larger graupel particle size further leads to the enhanced electric intensity and lightning discharges.

Funder

National Natural Science Foundation of China

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3