Upward Leaders Initiated From Instrumented Lightning Rods During the Approach of a Downward Leader in a Cloud‐To‐Ground Flash

Author:

Saba Marcelo M. F.1ORCID,Lauria Paola B.1,Schumann Carina2,Silva José Claudio de O.3,Mantovani Felipe de L.1

Affiliation:

1. INPE—National Institute for Space Research São José dos Campos Brazil

2. JLRL University of the Witwatersrand Johannesburg South Africa

3. APTEMC São José dos Campos Brazil

Abstract

AbstractIn this paper we analyze electric‐field and current measurements of upward leaders induced by a downward negative lightning flash that struck a residential building. The attachment process was recorded by two high‐speed cameras running at 37,800 and 70,000 images per second and the current measured in two lightning rods. Differently from previous works, here we show, for the first time, current measurements of multiple upward leaders that after initiation propagate to connect the negative downward moving leader. At the beginning of the propagation of the leaders that initiate on the instrumented lightning rods, current pulses appear superimposed to a steadily increasing DC current. The upward leader current pulses increase with the approach of the downward leader and are not synchronized but present an alternating pattern. All 2D leader speeds are approximately constant. The upward leaders are slower than the downward leader speed. The average time interval between current pulses in upward leaders is close to the interstep time interval found by optical or electric field sensors for negative cloud‐to‐ground stepped leaders. The upward leaders respond to different downward propagating branches and, as the branches alternate in propagation and intensity, so do the leaders accordingly. Right before the attachment process the alternating pattern of the leaders ceases, all downward leader branches intensify, and consequently upward leaders synchronize and pulse together. The average linear densities for upward leaders (49 and 82 μC/m) were obtained for the first time for natural lightning.

Funder

Fundação de Amparo à Pesquisa do Estado de São Paulo

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3