Research on the Initiation of Multiple Upward Leaders From an Isolated Building Based on an Improved Lightning Attachment Model

Author:

Lin Yuhe123,Tan Yongbo1ORCID,Yu Junhao1,Qi Qi2,Wu Bin2ORCID,Lyu Weitao2ORCID

Affiliation:

1. Emergency Management College Nanjing University of Information Science and Technology Nanjing China

2. State Key Laboratory of Severe Weather CMA Key Laboratory of Lightning Chinese Academy of Meteorological Sciences Beijing China

3. Shanghai Meteorological Bureau Financial Accounting Center Shanghai Meteorological Administrative Service Technology Center Shanghai China

Abstract

AbstractMore and more optical records have exhibited that multiple upward leaders (MULs) occur frequently on a building in the flash attachment process. An interesting issue is why a building can continue to launch upward leader (UL) after the first one appears. This phenomenon is analyzed in the present paper. Considering the influence of the leader behaviors on the ambient electric field, an improved 3‐D fine‐resolution lightning attachment model with MULs is established to simulate cloud‐to‐ground flash events with diverse leader spatial morphologies. The simulation results show that MULs may initiate almost simultaneously or with an obvious delay and the variation range of UL length is large. From this, the flash events of lightning terminating on a building are divided into four scenarios and each scenario is analyzed. It was found that the spatial location of downward leader, the length and propagation direction of the first UL and the time interval from the inception of the first UL to final jump significantly affect the electric fields at top corners of building and further affect the inception of the second UL. Based on qualitative analysis, four factors are proposed to explain why the above four scenarios happen.

Funder

Data Center of Management Science, National Natural Science Foundation of China - Peking University

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3