Between Broadening and Narrowing: How Mixing Affects the Width of the Droplet Size Distribution

Author:

Lim Jung‐Sub1ORCID,Hoffmann Fabian1ORCID

Affiliation:

1. Meteorological Institute Ludwig Maximilian University of Munich Munich Germany

Abstract

AbstractEntrainment and mixing play an essential role in shaping the droplet size distribution (DSD), with commensurate effects on cloud radiative properties or precipitation formation. In this paper, we use a model that considers all relevant scales related to entrainment and mixing by employing the linear eddy model (LEM) as a subgrid‐scale (SGS) mixing model, coupled with a large‐eddy simulation model and a Lagrangian cloud model (LCM) for a single cumulus congestus cloud. We confirm that the DSD is broadened toward small‐size droplets during homogeneous mixing. During inhomogeneous mixing, the DSD width remains almost unchanged. The DSD width can also be narrowed after mixing. We show that this happens when DSD is broadened toward small‐size droplets, which evaporate rapidly, while larger droplets are almost unaffected. In addition, when droplets ascend during mixing, DSD narrowing is caused when the adiabatic increase in supersaturation is slower than the average droplet evaporation, allowing only the largest droplets to benefit from the newly produced supersaturation. The narrowing mixing scenario prevents clouds from having too broad DSDs and causes the DSD relative dispersion to converge around 0.2 to 0.4. As this scenario is more frequent when the LEM SGS model is used, our results indicate that adequately modeling turbulent mixing is necessary to represent a realistic DSD shape.

Funder

Deutsche Forschungsgemeinschaft

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3