Life Cycle Evolution of Mixing in Shallow Cumulus Clouds

Author:

Lim Jung‐Sub1ORCID,Hoffmann Fabian1ORCID

Affiliation:

1. Meteorological Institute Ludwig Maximilian University of Munich Munich Germany

Abstract

AbstractUnderstanding how entrainment and mixing shape the cloud droplet size distribution (DSD) is crucial for understanding the optical properties and precipitation efficiency of clouds. Different mixing scenarios, mainly homogeneous and inhomogeneous, shape the DSD in a distinct way and alter the cloud's impact on climate. However, the prevalence of these mixing scenarios and how they vary in space and time is still uncertain, as underlying processes are commonly unresolved by conventional numerical models. To overcome this challenge, we employ the L3 model, which considers supersaturation fluctuations and turbulent mixing down to the finest relevant lengthscales, making it possible to represent different mixing scenarios realistically. We investigate the spatial and temporal evolution of mixing scenarios over the life cycle of shallow cumulus clouds for varying boundary layer humidities and aerosol concentrations. Our findings suggest homogeneous mixing is generally predominant in cumulus clouds, while different mixing scenarios occur concurrently in the same cloud. Notably, inhomogeneous mixing increases over the cloud life cycle across all analyzed cases. The mean and standard deviation of supersaturation are found to be the most capable indicators of this evolution, providing a comprehensive insight into the characteristics of mixing scenarios. Finally, we show inhomogeneous mixing is more prevalent in drier boundary layers and for higher aerosol concentrations, underscoring the need for a more comprehensive investigation of how these mixing dynamics evolve in a changing climate.

Funder

Deutsche Forschungsgemeinschaft

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3