MMS Observations of Dayside Warm (Several eV to 100 eV) Ions in the Middle and Outer Magnetosphere

Author:

Goldstein J.12ORCID,Burch J. L.1ORCID,Fuselier S. A.12ORCID,Gomez R.1ORCID,Gonzalez C. A.1ORCID,Kim M. J.12ORCID,Mukherjee J.1ORCID,Turner N. E.3ORCID,Wilson M. E.34

Affiliation:

1. Space Science and Engineering Division Southwest Research Institute San Antonio TX USA

2. Department of Physics and Astronomy University of Texas at San Antonio San Antonio TX USA

3. Department of Physics and Astronomy Trinity University San Antonio TX USA

4. Now at Raytheon Technologies Tewksbury MA USA

Abstract

AbstractWarm (several eV to 100 eV) ions are an important, and still poorly understood, component of the magnetospheric plasma environment. We present the first comprehensive statistical analysis of several distinct populations of warm ions in the dayside middle and outer magnetosphere. We analyze 7 months (1 September 2015–31 March 2016) of Magnetospheric Multiscale Hot Plasma Composition Analyzer data comprising 734,200 moments (density, temperature) and energy‐dependent pitch angle distributions (PADs) of three major ion species (H+, He+, and O+) with energy ≤100 eV. PADs are represented by an energy‐averaged index that characterizes the shape of the PAD as field‐aligned (FA), pancake, or isotropic. We use filtering by temperature, pitch angle, and concentration to distinguish different populations, and obtain new and more complete information about average density, temperature, PADs, and composition. Our analysis explores two known populations of warm ions: the warm plasmasphere (WPS) and the warm cloak/trough (C/T). The WPS is a higher‐temperature, higher‐L extension of the duskside plasmaspheric bulge, containing mostly trapped (pancake/isotropic) ions with an H+:He+:O+ order of ion dominance. The C/T contains mostly FA warm ions with a dawnward (duskward) temperature gradient for H+ (He+ and O+), lower densities, and an H+:O+:He+ order of ion dominance. The WPS‐C/T overlap contains a mixture of the two populations (e.g., FA He+ in WPS, trapped O+ in C/T). Pancake (FA) PADs are correlated with higher (lower) density/temperature. Our analysis also identifies warm ions in the low‐energy plasma sheet. Our work consolidates and systematically extends the characterizations of warm ions reported in previous studies.

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Geophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Assessing the Sources of the O+ in the Plasma Sheet;Journal of Geophysical Research: Space Physics;2024-08

2. EMIC Wave Energy Dissipation as a Source of O+ Conics and Warm Plasma Cloak in the Earth's Inner Magnetosphere;Journal of Geophysical Research: Space Physics;2024-05

3. MMS Observations of Warm‐Ion (E < 100 eV) Heating Inside Plasmaspheric Plumes;Journal of Geophysical Research: Space Physics;2023-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3