EMIC Wave Energy Dissipation as a Source of O+ Conics and Warm Plasma Cloak in the Earth's Inner Magnetosphere

Author:

Gamayunov Konstantin V.1ORCID,Kim Hyomin2,Shin Youra2ORCID

Affiliation:

1. Department of Aerospace, Physics and Space Sciences Florida Institute of Technology Melbourne FL USA

2. Department of Physics New Jersey Institute of Technology Newark NJ USA

Abstract

AbstractThis study focuses on a specific source of the O+ conics and warm plasma cloak in the Earth's inner magnetosphere due to electromagnetic ion cyclotron (EMIC) wave energy dissipation. We analyze the EMIC wave event observed by Van Allen Probe‐A in the early afternoon off equatorial magnetosphere on 18 November 2015, where the two dominant EMIC wave bands, He+‐band and H+‐band, were observed for ∼4 min. All the wave and plasma parameters, the DC magnetic field, and ion distributions needed for our analysis are taken from the Van Allen Probe‐A observations during the event. The major results of our analysis are as follows. (a) The H+ and He+ heating by EMIC waves is negligible. (b) A strong heating of O+ by the wave energy dissipation around the third, fifth, and sixth harmonics of the O+ gyrofrequency is revealed, where the majority of energy dissipated goes into heating of O+ with the energies ≲100 eV and pitch angles ∼20°–90°. The estimated energy deposition rate is ∼0.1–3.4 eV/s per O+, totaling to the deposition of ∼20–800 eV per O+ during the event. (c) EMIC waves substantially contribute to the formation of O+ conics and warm plasma cloak by heating the upgoing low‐energy ionospheric O+ because waves heat ions with the energies and pitch angles that are characteristic of conics and warm plasma cloak, and the energy deposition per O+ is comparable to those characteristic energies.

Funder

National Aeronautics and Space Administration

Publisher

American Geophysical Union (AGU)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3