Ion‐Scale Magnetic Flux Rope Generated From Electron‐Scale Magnetopause Current Sheet: Magnetospheric Multiscale Observations

Author:

Hasegawa H.12ORCID,Denton R. E.3ORCID,Dokgo K.2ORCID,Hwang K.‐J.2,Nakamura T. K. M.4ORCID,Burch J. L.2ORCID

Affiliation:

1. Institute of Space and Astronautical Science Japan Aerospace Exploration Agency Sagamihara Japan

2. Southwest Research Institute San Antonio TX USA

3. Department of Physics and Astronomy Dartmouth College Hanover NH USA

4. Space Research Institute Austrian Academy of Sciences Graz Austria

Abstract

AbstractWe present in‐depth analysis of three southward‐moving meso‐scale (ion‐to magnetohydrodynamic‐scale) flux transfer events (FTEs) and subsequent crossing of a reconnecting magnetopause current sheet (MPCS), which were observed on 8 December 2015 by the Magnetospheric Multiscale spacecraft in the subsolar region under southward and duskward magnetosheath magnetic field conditions. We aim to understand the generation mechanism of ion‐scale magnetic flux ropes (ISFRs) and to reveal causal relationship among magnetic field structures, electromagnetic energy conversion, and kinetic processes in magnetic reconnection layers. Results from magnetic field reconstruction methods are consistent with a flux rope with a length of about one ion inertial length growing from an electron‐scale current sheet (ECS) in the MPCS, supporting the idea that ISFRs can be generated through secondary reconnection in an ECS. Grad‐Shafranov reconstruction applied to the three FTEs shows that the FTEs had axial orientations similar to that of the ISFR. This suggests that these FTEs also formed through the same secondary reconnection process, rather than multiple X‐line reconnection at spatially separated locations. Four‐spacecraft observations of electron pitch‐angle distributions and energy conversion rate suggest that the ISFR had three‐dimensional magnetic topology and secondary reconnection was patchy or bursty. Previously reported positive and negative values of , with magnitudes much larger than expected for typical MP reconnection, were seen in both magnetosheath and magnetospheric separatrix regions of the ISFR. Many of them coexisted with bi‐directional electron beams and intense electric field fluctuations around the electron gyrofrequency, consistent with their origin in separatrix activities.

Funder

Japan Society for the Promotion of Science

National Aeronautics and Space Administration

Austrian Science Fund

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Geophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3