Direct Observation of Magnetic Reconnection Resulting From Interaction Between Magnetic Flux Rope and Magnetic Hole in the Earth's Magnetosheath

Author:

Wang Shimou123ORCID,Wang Rongsheng123ORCID,Lu Quanming123ORCID,Lu San123ORCID,Huang Kai45ORCID

Affiliation:

1. Deep Space Exploration Laboratory/School of Earth and Space Sciences University of Science and Technology of China Hefei China

2. CAS Center for Excellence in Comparative Planetology/CAS Key Laboratory of Geospace Environment/Anhui Mengcheng National Geophysical Observatory University of Science and Technology of China Hefei China

3. Collaborative Innovation Center of Astronautical Science and Technology Harbin China

4. School of Physics Harbin Institute of Technology Harbin China

5. Laboratory for Space Environment and Physical Sciences Harbin Institute of Technology Harbin China

Abstract

AbstractWe report in situ observation of magnetic reconnection between magnetic flux rope (MFR) and magnetic hole (MH) in the magnetosheath by the Magnetospheric Multiscale mission. The MFR was rooted in the magnetopause and could be generated by magnetopause reconnection therein. A thin current sheet was generated due to the interaction between MFR and MH. The sub‐Alfvénic ion bulk flow and the Hall field were detected inside this thin current sheet, indicating an ongoing reconnection. An elongated electron diffusion region characterized by non‐frozen‐in electrons, magnetic‐to‐particle energy conversion, and crescent‐shaped electron distribution was detected in the reconnection exhaust. The observation provides a mechanism for the dissipation of MFRs and thus opens a new perspective on the evolution of MFRs at the magnetopause. Our work also reveals one potential fate of the MHs in the magnetosheath which could reconnect with the MFRs and further merge into the magnetopause.

Funder

China Postdoctoral Science Foundation

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3