Dynamics of the Barrier Layer Dipole in the Equatorial Indian Ocean

Author:

Li Junde1ORCID,Han Di1,Liao Guanghong1,Zhang Tao2,Ding Ruibin23,Song Xunshu3

Affiliation:

1. College of Oceanography Hohai University Nanjing China

2. Institute of Polar and Ocean Technology Second Institute of Oceanography Ministry of Natural Resources Hangzhou China

3. State Key Laboratory of Satellite Ocean Environment Dynamics Second Institute of Oceanography Ministry of Natural Resources Hangzhou China

Abstract

AbstractThe barrier layer (BL) significantly impacts the upper ocean circulation and thermodynamic structure by inhibiting the heat and momentum exchange between the mixed layer (ML) and the subsurface layer. There exist sea surface temperature and salinity dipole modes in the tropical Indian Ocean, however, a BL dipole mode has not yet been identified. Using the latest observations and ocean reanalysis, here we show a robust BL dipole mode in the central and eastern equatorial Indian Ocean, which is highly correlated with the Indian Ocean Dipole (IOD) events. Composite analysis shows that the BL thickness anomalies peak in autumn and are much larger during positive IOD events than during negative IOD events. We show that a positive BL dipole phase is characterized by positive BL thickness anomalies in the central equatorial Indian Ocean and negative BL thickness anomalies in the eastern equatorial Indian Ocean, and vice versa for a negative BL dipole phase. During positive IOD events, negative surface salinity anomalies slightly affect the ML depth along the equatorial Indian Ocean. Positive subsurface temperature anomalies deepen the isothermal layer (IL) in the central equatorial Indian Ocean and strong negative subsurface temperature anomalies significantly lift the IL in the eastern equatorial Indian Ocean, controlling the BL thickness anomalies and forming a positive BL dipole pattern. This operates in an opposite direction during negative IOD events. Our study shows a close relationship between the BL dipole and the IOD and has far‐reaching implications for better understanding and predicting the IOD events.

Publisher

American Geophysical Union (AGU)

Subject

Earth and Planetary Sciences (miscellaneous),Space and Planetary Science,Geochemistry and Petrology,Geophysics,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3