Evidence of Langmuir Mixing Effects in the Upper Ocean Layer During Tropical Cyclones Using Observations and a Coupled Wave‐Ocean Model

Author:

Zhou Xiaohui12ORCID,Hara Tetsu1ORCID,Ginis Isaac1,D’Asaro Eric3ORCID,Reichl Brandon G.4ORCID

Affiliation:

1. Graduate School of Oceanography University of Rhode Island Narragansett RI USA

2. Princeton University Princeton NJ USA

3. Applied Physics Laboratory and School of Oceanography University of Washington Seattle WA USA

4. NOAA Geophysical Fluid Dynamics Laboratory Princeton NJ USA

Abstract

AbstractMixing of the ocean beneath tropical cyclones (TC) cools the surface temperature thereby modifying the storm intensity. Modeling studies predict that surface wave forcing through Langmuir turbulence (LT) increases the mixing and cooling and decreases near‐surface vertical velocity shear. However, there are very few quantitative observational validations of these model predictions, and the validation efforts are often limited by uncertainties in the drag coefficient (Cd). We combine EM‐APEX and Lagrangian float measurements of temperature, salinity, velocity, and vertical turbulent kinetic energy (VKE) from five TCs with a coupled ocean‐wave model (Modular Ocean Model 6—WAVEWATCH III) forced by the drag coefficient Cd directly constrained for these storms. On the right‐hand of the storms in the northern hemisphere, where wind and waves are nearly aligned, the measured VKE is consistent with predictions of models including LT and 2–3 times higher than predictions without LT. Similarly, vertical shear in the upper 20 m is small, consistent with predictions of LT models and inconsistent with the large shears predicted by models without LT. On the left‐hand of the storms, where wind and waves are misaligned, the observed VKE and cooling are reduced compared to those on the right‐hand, consistent with the measured decrease in Cd. These results confirm the importance of surface waves for ocean cooling and thus TC intensity, through both Cd and LT effects. However, the model predictions, even with the LT parameterization, underestimate the upper ocean cooling and mixed layer deepening by 20%–30%, suggesting possible deficiency of the existing LT parameterization.

Funder

National Science Foundation

Publisher

American Geophysical Union (AGU)

Subject

Earth and Planetary Sciences (miscellaneous),Space and Planetary Science,Geochemistry and Petrology,Geophysics,Oceanography

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3