Drivers of Interannual Salinity Variability in the Arctic Ocean

Author:

Hochet Antoine1ORCID,Lique Camille1ORCID,Sévellec Florian12,Llovel William1ORCID

Affiliation:

1. Laboratoire d’Océanographie Physique et Spatiale University Brest CNRS IRD Ifremer Brest France

2. Odyssey Team‐project INRIA CNRS Paris France

Abstract

AbstractAccurate projections and attribution of Arctic Ocean changes in climate models require a good understanding of the mechanisms underlying interannual salinity variability in the region. Although some mechanisms have been extensively studied in idealized setting, in particular for the dynamics of the Beaufort gyre (BG), it remains unclear how applicable they are to more complex systems. This study introduces a new diagnostic based on salinity variance budget to robustly assess the mechanisms of salinity variations. The diagnostic is then applied to the “Estimating the Circulation and Climate of the Ocean” state estimate. Results indicate that the advection of salinity anomaly in the direction of the mean salinity gradient made by velocity anomalies is the primary source of interannual salinity variability. These velocities are primarily attributed to fluctuating winds via Ekman transports. Fluctuating surface freshwater fluxes from the atmosphere and sea ice are the second most important source of variability and cannot be neglected. The two sinks of interannual salinity variance are associated with the erosion of large scale gradients of the mean circulation by eddies and to a lesser extent to the diffusive terms. Over continental shelves, particularly over the East Siberian Shelf (ESS), ocean surface freshwater fluxes and diffusion play a more important role than in the deep basins. We also report a strong intensification of all sources and sinks of interannual salinity variability in the BG and an opposite weakening in the ESS in the second decade of the analysis (2004–2014) with respect to the first (1993–2003).

Funder

European Space Agency

Agence Nationale de la Recherche

Publisher

American Geophysical Union (AGU)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3