Simulated Impact of Time‐Varying River Runoff and Greenland Freshwater Discharge on Sea Level Variability in the Beaufort Gyre Over 2005–2018

Author:

Tajouri S.1ORCID,Llovel W.1ORCID,Sévellec F.12ORCID,Molines J.‐M.3,Mathiot P.3,Penduff T.3ORCID,Leroux S.4ORCID

Affiliation:

1. Laboratoire d’Océanographie Physique et Spatiale (LOPS) University Brest CNRS IRD IFREMER Plouzané France

2. Odyssey Team‐Project INRIA CNRS Brest France

3. Université Grenoble Alpes CNRS INRAE IRD Grenoble INP Institut des Géosciences de l’Environnement (IGE) Grenoble France

4. Datlas Grenoble France

Abstract

AbstractGlobal mean sea level has been rising at a rate of 3.25 ± 0.4 mm yr−1 over 1993–2018. Yet several regions are increasing at a much faster rate, such as the Beaufort Gyre in the Arctic Ocean at a rate of 9.3 ± 7.0 mm yr−1 over 2003–2014. At interannual to decadal time scales, the Beaufort Gyre sea level is controlled by salinity changes due to sea ice melt and wind‐driven lateral Ekman convergence–divergence of freshwater. This study uses recent Greenland discharge and river runoff estimates to isolate and quantify the sea level response to freshwater fluxes variability over the period 1980–2018. It relies on sensitivity experiments based on a global ocean model including sea‐ice and icebergs. These sensitivity experiments only differ by the freshwater fluxes temporal variability of Greenland and global rivers which are either seasonal climatologies or fully time varying, revealing the individual and combined impact of these freshwater sources fluctuations. Fully varying Greenland discharge and river runoff produce an opposite impact on sea level trends over 2005–2018 in the Beaufort Gyre region, the former driving an increase, while the latter, a decrease. Their combined impact leads to a fairly weak sea level trend. The sea level response is primarily driven by salinity variations in the upper 300 m, which are mainly caused by salinity advection involving complex compensations between passive, active, and nonlinear advection. This study shows that including the temporal variability of freshwater fluxes in forced global ocean models results in a better representation of regional sea level change.

Funder

Université de Bretagne Occidentale

Publisher

American Geophysical Union (AGU)

Reference105 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3