Interactions Between Internal Solitary Waves and Sea Ice

Author:

Hartharn‐Evans Samuel G.12ORCID,Carr Magda1ORCID,Stastna Marek3

Affiliation:

1. School of Mathematics, Statistics and Physics Newcastle University Newcastle upon Tyne UK

2. Department of Geography and Environmental Sciences Northumbria University Newcastle upon Tyne UK

3. Department of Applied Mathematics University of Waterloo Waterloo ON Canada

Abstract

AbstractInternal Solitary Waves (ISWs) that form on internal density interfaces in the ocean are responsible for the horizontal transport and vertical mixing of heat, nutrients, and other water properties. The waves also induce fluid motion that can induce stresses and motion on floating structures, such as sea ice. This study investigates ISW‐sea ice interactions. Using laboratory experiments, ISWs generated via the lock gate technique are observed interacting with weighted floats of varying sizes. The motion of these floats can be modeled effectively, simply as the average velocity of the fluid under the float, and it is found that when floats are small relative to the wavelength, they behave in the same manner as a fluid particle, but as floats become bigger relative to the wavelength, the maximum velocity decreases, and interaction time increases. This phenomenon is explained simply by the wave‐induced flow as opposed to energy transfer arguments. By using this model with a large sample of theoretical waves, the float motion is parameterized based on the float length and wave parameters. Whilst small floats do not disrupt the flow patterns, the wave‐induced flow under larger floats forms a pair of counter‐rotating vortices at each end of the float. The formation and evolution of these flow features arise as a result of boundary layer separation with the horizontal wave‐induced flow relative to the float velocity. This reveals complex dynamics due to the non‐stationary behavior of both the float and flow.

Funder

Natural Environment Research Council

Publisher

American Geophysical Union (AGU)

Subject

Earth and Planetary Sciences (miscellaneous),Space and Planetary Science,Geochemistry and Petrology,Geophysics,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3