Affiliation:
1. Geosciences Department and Laboratoire de Météorologie Dynamique (CNRS and IPSL) École Normale Supérieure and PSL University Paris France
2. Division of Geological and Planetary Sciences California Institute of Technology Pasadena CA USA
3. Department of Atmospheric and Oceanic Sciences University of California at Los Angeles Los Angeles CA USA
Abstract
AbstractData assimilation (DA) aims to optimally combine model forecasts and observations that are both partial and noisy. Multi‐model DA generalizes the variational or Bayesian formulation of the Kalman filter, and we prove that it is also the minimum variance linear unbiased estimator. Here, we formulate and implement a multi‐model ensemble Kalman filter (MM‐EnKF) based on this framework. The MM‐EnKF can combine multiple model ensembles for both DA and forecasting in a flow‐dependent manner; it uses adaptive model error estimation to provide matrix‐valued weights for the separate models and the observations. We apply this methodology to various situations using the Lorenz96 model for illustration purposes. Our numerical experiments include multiple models with parametric error, different resolved scales, and different fidelities. The MM‐EnKF results in significant error reductions compared to the best model, as well as to an unweighted multi‐model ensemble, with respect to both probabilistic and deterministic error metrics.
Publisher
American Geophysical Union (AGU)
Subject
General Earth and Planetary Sciences,Environmental Chemistry,Global and Planetary Change
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献