Data Assimilation in Chaotic Systems Using Deep Reinforcement Learning

Author:

Hammoud Mohamad Abed El Rahman1ORCID,Raboudi Naila1,Titi Edriss S.23,Knio Omar1ORCID,Hoteit Ibrahim1ORCID

Affiliation:

1. King Abdullah University of Science and Technology Thuwal Saudi Arabia

2. Department of Applied Mathematics and Theoretical Physics University of Cambridge Cambridge UK

3. Department of Mathematics Texas A & M University College Station TX USA

Abstract

AbstractData assimilation (DA) plays a pivotal role in diverse applications, ranging from weather forecasting to trajectory planning for autonomous vehicles. A prime example is the widely used ensemble Kalman filter (EnKF), which relies on the Kalman filter's linear update equation to correct each of the ensemble forecast member's state with incoming observations. Recent advancements have witnessed the emergence of deep learning approaches in this domain, primarily within a supervised learning framework. However, the adaptability of such models to untrained scenarios remains a challenge. In this study, we introduce a new DA strategy that utilizes reinforcement learning (RL) to apply state corrections using full or partial observations of the state variables. Our investigation focuses on demonstrating this approach to the chaotic Lorenz 63 and 96 systems, where the agent's objective is to maximize the geometric series with terms that are proportional to the negative root‐mean‐squared error (RMSE) between the observations and corresponding forecast states. Consequently, the agent develops a correction strategy, enhancing model forecasts based on available observations. Our strategy employs a stochastic action policy, enabling a Monte Carlo‐based DA framework that relies on randomly sampling the policy to generate an ensemble of assimilated realizations. Numerical results demonstrate that the developed RL algorithm performs favorably when compared to the EnKF. Additionally, we illustrate the agent's capability to assimilate non‐Gaussian observations, addressing one of the limitations of the EnKF.

Funder

Global Collaborative Research, King Abdullah University of Science and Technology

King Abdullah University of Science and Technology

Qatar National Research Fund

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3