Antarctic Vortex Dehydration in 2023 as a Substantial Removal Pathway for Hunga Tonga‐Hunga Ha'apai Water Vapor

Author:

Zhou Xin12ORCID,Dhomse Sandip S.23ORCID,Feng Wuhu24ORCID,Mann Graham2ORCID,Heddell Saffron2ORCID,Pumphrey Hugh5,Kerridge Brian J.6,Latter Barry6ORCID,Siddans Richard6,Ventress Lucy6,Querel Richard7ORCID,Smale Penny7ORCID,Asher Elizabeth89,Hall Emrys G.9ORCID,Bekki Slimane10,Chipperfield Martyn P.23ORCID

Affiliation:

1. School of Atmospheric Sciences Chengdu University of Information Technology Chengdu China

2. School of Earth and Environment University of Leeds Leeds UK

3. National Centre for Earth Observation, University of Leeds Leeds UK

4. National Centre for Atmospheric Science, University of Leeds Leeds UK

5. School of GeoSciences The University of Edinburgh Edinburgh UK

6. NCEO, STFC Rutherford Appleton Laboratory Oxon UK

7. National Institute of Water and Atmospheric Research (NIWA) Lauder New Zealand

8. Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder CO USA

9. NOAA Global Monitoring Laboratory Boulder CO USA

10. LATMOS/IPSL, Sorbonne Université, UVSQ, CNRS Paris France

Abstract

AbstractThe January 2022 eruption of Hunga Tonga‐Hunga Ha'apai (HTHH) injected a huge amount (∼150 Tg) of water vapor (H2O) into the stratosphere, along with small amount of SO2. An off‐line 3‐D chemical transport model (CTM) successfully reproduces the spread of the injected H2O through October 2023 as observed by the Microwave Limb Sounder. Dehydration in the 2023 Antarctic polar vortex caused the first substantial (∼20 Tg) removal of HTHH H2O from the stratosphere. The CTM indicates that this process will dominate removal of HTHH H2O for the coming years, giving an overall e‐folding timescale of 4 years; around 25 Tg of the injected H2O is predicted to still remain in the stratosphere by 2030. Following relatively low Antarctic column ozone in midwinter 2023 due to transport effects, additional springtime depletion due to H2O‐related chemistry was small and maximized at the vortex edge (10 DU in column).

Publisher

American Geophysical Union (AGU)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3