The Influence of Stratospheric Hydration From the Hunga Eruption on Chemical Processing in the 2023 Antarctic Vortex

Author:

Santee M. L.1ORCID,Manney G. L.23ORCID,Lambert A.1ORCID,Millán L. F.1ORCID,Livesey N. J.1ORCID,Pitts M. C.4ORCID,Froidevaux L.1,Read W. G.1,Fuller R. A.1

Affiliation:

1. Jet Propulsion Laboratory California Institute of Technology Pasadena CA USA

2. NorthWest Research Associates Socorro NM USA

3. New Mexico Institute of Mining and Technology Socorro NM USA

4. NASA Langley Research Center Hampton VA USA

Abstract

AbstractWe use measurements of trace gases from the Microwave Limb Sounder and polar stratospheric clouds (PSCs) from the Cloud‐Aerosol Lidar with Orthogonal Polarization to investigate how the extraordinary stratospheric water vapor enhancement from the 2022 Hunga eruption affected polar processing during the 2023 Antarctic winter. Although the dynamical characteristics of the vortex itself were generally unexceptional, the excess moisture initially raised PSC formation threshold temperatures above typical values. Cold conditions, especially in early July, prompted ice PSC formation and unusually severe irreversible dehydration at higher levels (500–700 K), while atypical hydration occurred at lower levels (380–460 K). Heterogeneous chemical processing was more extensive, both vertically (up to 750–800 K) and temporally (earlier in the season), than in prior Antarctic winters. The resultant HCl depletion and ClO enhancement redefined their previously observed ranges at and above 600 K. Albeit unmatched in the satellite record, the early‐winter upper‐level chlorine activation was insufficient to induce substantial ozone loss. Chlorine activation, denitrification, and dehydration processes ran to completion by July/August, with trace gas evolution mostly following the climatological mean thereafter, but with chlorine deactivation starting slightly later than usual. While cumulative ozone losses at 410–550 K were relatively large, probably because of the delayed chlorine deactivation, they were not unprecedented. Thus, ozone depletion was unremarkable throughout the lower stratosphere. Although Hunga enhanced PSC formation and chemical processing in early winter, saturation of lower stratospheric denitrification, dehydration, and chlorine activation (as is typical in the Antarctic) prevented an exceptionally severe ozone hole in 2023.

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3