The (In)sensitivity of Granular Creep to Materials and Boundaries

Author:

Deshpande Nakul S.1ORCID,Arratia Paulo E.2ORCID,Jerolmack Douglas J.12ORCID

Affiliation:

1. Department of Earth and Environmental Science University of Pennsylvania Philadelphia PA USA

2. Department of Mechanical Engineering and Applied Mechanics University of Pennsylvania Philadelphia PA USA

Abstract

AbstractSoils around the planet creep, despite wide variations in particle properties and environments. This sub‐yield “flow” of soil interacts with a variety of boundaries, in terms of geometry and friction. Here we explore the veracity of recent observations of undisturbed, gravity‐driven creep, by testing a suite of materials and boundary configurations in an experimental hillslope. Using an optical interferometry technique, we demonstrate that creep is a generic relaxation process whose qualitative dynamics are insensitive to grain properties. Velocity profiles are exponential, albeit with a defect near the no‐slip boundary. Quantitative patterns such as spatial variability and magnitude of strain rates, however, are exquisitely sensitive to the details of the experiment. The emerging picture is that creep is accomplished by localized plastic failure, which induces an elastic redistribution. Similar patterns have been observed in model glasses and on earthquake faults, indicating that sub‐yield relaxation in disordered materials may share common physics.

Publisher

American Geophysical Union (AGU)

Subject

General Earth and Planetary Sciences,Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3