Potential Non‐Linearities in the High Latitude Circulation and Ozone Response to Stratospheric Aerosol Injection

Author:

Bednarz Ewa M.123ORCID,Visioni Daniele45ORCID,Butler Amy H.2ORCID,Kravitz Ben67ORCID,MacMartin Douglas G.3ORCID,Tilmes Simone5ORCID

Affiliation:

1. Cooperative Institute for Research in Environmental Sciences (CIRES) University of Colorado Boulder Boulder CO USA

2. NOAA Chemical Sciences Laboratory (NOAA CSL) Boulder CO USA

3. Sibley School of Mechanical and Aerospace Engineering Cornell University Ithaca NY USA

4. Department of Earth and Atmospheric Sciences Cornell University Ithaca NY USA

5. Atmospheric Chemistry Observations and Modelling (ACOM) National Center for Atmospheric Research (NCAR) Boulder CO USA

6. Department of Earth and Atmospheric Sciences Indiana University Bloomington IN USA

7. Atmospheric Sciences and Global Change Division Pacific Northwest National Laboratory Richland WA USA

Abstract

AbstractThe impacts of Stratospheric Aerosol Injection (SAI) on the atmosphere and surface climate depend on when and where the sulfate aerosol precursors are injected, as well as on how much surface cooling is to be achieved. We use a set of CESM2(WACCM6) SAI simulations achieving three different levels of global mean surface cooling and demonstrate that unlike some direct surface climate impacts driven by the reflection of solar radiation by sulfate aerosols, the SAI‐induced changes in the high latitude circulation and ozone are more complex and could be non‐linear. This manifests in our simulations by disproportionally larger Antarctic springtime ozone loss, significantly larger intra‐ensemble spread of the Arctic stratospheric jet and ozone responses, and non‐linear impacts on the extratropical modes of surface climate variability under the strongest‐cooling SAI scenario compared to the weakest one. These potential non‐linearities may add to uncertainties in projections of regional surface impacts under SAI.

Funder

National Science Foundation

National Oceanic and Atmospheric Administration

Publisher

American Geophysical Union (AGU)

Subject

General Earth and Planetary Sciences,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3