Identifying Climate Impacts From Different Stratospheric Aerosol Injection Strategies in UKESM1

Author:

Wells Alice F.1ORCID,Henry Matthew1ORCID,Bednarz Ewa M.234ORCID,MacMartin Douglas G.4ORCID,Jones Andy5ORCID,Dalvi Mohit5,Haywood James M.15ORCID

Affiliation:

1. Faculty of Environment, Science and Economy Department of Mathematics and Statistics University of Exeter Exeter UK

2. Cooperative Institute for Research in Environmental Sciences (CIRES) University of Colorado Boulder Boulder CO USA

3. NOAA Chemical Sciences Laboratory (NOAA CSL) Boulder CO USA

4. Sibley School of Mechanical and Aerospace Engineering Cornell University Ithaca NY USA

5. Met Office Exeter UK

Abstract

AbstractStratospheric Aerosol Injection (SAI) is a proposed method of climate intervention aiming to reduce the impacts of human‐induced global warming by reflecting a portion of incoming solar radiation. Many studies have demonstrated that SAI would successfully reduce global‐mean surface air temperatures; however the vast array of model scenarios and strategies result in a diverse range of climate impacts. Here we compare two SAI strategies—a quasi‐ equatorial injection and a multi‐latitude off‐equatorial injection—simulated with the UK Earth System Model (UKESM1), both aiming to reduce the global‐mean surface temperature from that of a high‐end emissions scenario to that of a moderate emissions scenario. We compare changes in the surface and stratospheric climate under each strategy to determine how the climate response depends on the injection location. In agreement with previous studies, an equatorial injection results in a tropospheric overcooling in the tropics and a residual warming in the polar regions, with substantial changes to stratospheric temperatures, water vapor and circulation. Previous comparisons of equatorial versus off‐equatorial injection strategies are limited to two studies using different versions of the Community Earth System Model. Our study evaluates how the climate responds in UKESM1 under these injection strategies. Our results are broadly consistent with previous findings, concluding that an off‐equatorial injection strategy can minimize regional surface temperature and precipitation changes relative to the target. We also present more in‐depth analysis of the associated changes in Hadley Circulation and regional temperature changes, and call for a new series of inter‐model SAI comparisons using an off‐equatorial strategy.

Publisher

American Geophysical Union (AGU)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3