Affiliation:
1. Department of Atmospheric Sciences University of Washington Seattle WA USA
2. Royal Belgian Institute for Space Aeronomy (BIRA‐IASB) Brussels Belgium
Abstract
AbstractWildfires are important sources of atmospheric reactive nitrogen. The reactive nitrogen species partitioning generally depends on fire characteristics. One reactive nitrogen compound, nitrous acid (HONO), is a source of hydroxyl radicals and nitric oxide, which can impact the oxidizing capacity of the atmosphere and fire plume chemistry and composition. We study the Australian wildfire season of 2019–2020, known as Black Summer, where numerous large and intense wildfires burned throughout the continent. We use HONO and nitrogen dioxide (NO2) from the TROPOspheric Monitoring Instrument (TROPOMI) and fire radiative power (FRP) from the Visible Infrared Imaging Radiometer Suite to investigate HONO and NO2 relationships with fire characteristics. The ratio of HONO to NO2 increases linearly with FRP both in Australia and globally. Both Australian and global fire relationships depend strongly on land cover type. These relationships can be applied to emission inventories to improve wildfire emission representation in models.
Funder
National Aeronautics and Space Administration
National Science Foundation
European Space Agency
Publisher
American Geophysical Union (AGU)
Subject
General Earth and Planetary Sciences,Geophysics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献