Pacific Decadal Oscillation Forecasting With Spatiotemporal Embedding Network

Author:

Qin Mengjiao12ORCID,Hu Linshu12ORCID,Qin Zhuoya3ORCID,Wan Lin4,Qin Lianjie56ORCID,Cao Wenting7,Wu Sensen12ORCID,Du Zhenhong12ORCID

Affiliation:

1. School of Earth Sciences Zhejiang University Hangzhou China

2. Zhejiang Provincial Key Laboratory of Geographic Information Science Hangzhou China

3. Faculty of Science The University of Hong Kong Hong Kong China

4. School of Computer Science China University of Geosciences Wuhan China

5. Key Laboratory of Environmental Change and Natural Disaster of Ministry of Education Faculty of Geographical Science Beijing Normal University Beijing China

6. Academy of Disaster Reduction and Emergency Management Ministry of Emergency Management and Ministry of Education Beijing Normal University Beijing China

7. State Key Laboratory of Satellite Ocean Environment Dynamics Second Institute of Oceanography Ministry of Natural Resources Hangzhou China

Abstract

AbstractThe Pacific decadal oscillation (PDO) is a decadal variability phenomenon occurring in the North Pacific Ocean. It has substantial impacts on marine ecosystems and the global climate. Due to the high complexity and unclear evolution mechanism, the accurate long‐term prediction of PDO remains a challenge. In this paper, a deep spatiotemporal embedding network (DSEN) is proposed to extract the spatiotemporal features from historical climate data and achieve end‐to‐end forecasting of the PDO index. The spatiotemporal features are recursive in the continuous forecasting of the PDO index on seasonal time scales, thus the cumulative error is largely reduced. During the test period of 39 years (1982–2020), our model can skillfully predict the PDO index up to 1 year, outperforming six methods used as benchmark. By contrast with physically‐based methods, DSEN can accurately predict the PDO index from a data‐driven perspective.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

American Geophysical Union (AGU)

Subject

General Earth and Planetary Sciences,Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3