Differentiating Between Simultaneous Loss Drivers in Earth's Outer Radiation Belt: Multi‐Dimensional Phase Space Density Analysis

Author:

Staples F. A.1ORCID,Ma Q.12ORCID,Kellerman A.1ORCID,Rae I. J.3ORCID,Forsyth C.4ORCID,Sandhu J. K.3ORCID,Bortnik J.1ORCID

Affiliation:

1. Department of Atmospheric and Oceanic Sciences University of California, Los Angeles Los Angeles CA USA

2. Center for Space Physics Boston University Boston MA USA

3. Department of Mathematics, Physics and Electrical Engineering Northumbria University Newcastle upon Tyne UK

4. Mullard Space Science Laboratory University College London London UK

Abstract

AbstractWe analyzed the contribution of electromagnetic ion cyclotron (EMIC) wave driven electron loss to a flux dropout event in September 2017. The evolution of electron phase space density (PSD) through the dropout showed the formation of a radially peaked PSD profile as electrons were lost at high L*, resembling distributions created by magnetopause shadowing. By comparing 2D Fokker Planck simulations of pitch angle diffusion to the observed change in PSD, we found that the μ and K of electron loss aligned with maximum scattering rates at dropout onset. We conclude that, during this dropout event, EMIC waves produced substantial electron loss. Because pitch angle diffusion occurred on closed drift paths near the last closed drift shell, no radial PSD minimum was observed. Therefore, the radial PSD gradients resembled solely magnetopause shadowing loss, even though the local pitch angle scattering produced electron losses of several orders of magnitude of the PSD.

Funder

National Aeronautics and Space Administration

National Science Foundation

Natural Environment Research Council

Science and Technology Facilities Council

Office of Nuclear Energy

Publisher

American Geophysical Union (AGU)

Subject

General Earth and Planetary Sciences,Geophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3