The effect of continuous geomagnetic storms on enhancements of ultrarelativistic electrons in the Earth’s outer radiation belt

Author:

Chen Jingrun,Tang Chaoling,Chu Xinxin

Abstract

Ultrarelativistic electrons (Ek > 3 MeV) are the most energetic electrons in the Earth’s outer radiation belt, which can cause serious damage to equipments on satellites. The evolutions of ultrarelativistic electrons during geomagnetic storm have been well understood, but the effects of continuous geomagnetic storm on ultrarelativistic electrons are still unclear. Using the data of the Van Allen Probes, we study the evolutions of ultrarelativistic electrons in the Earth’s outer radiation belt during the three continuous geomagnetic storm events. These continuous geomagnetic storm events include the two geomagnetic storms. During the recovery phase of the first geomagnetic storm, enhanced relativistic and ultrarelativistic electrons with lower energies (≥ 3.4 MeV) are observed. These enhanced relativistic electrons could be the source of ultrarelativistic electrons and contribute to ultrarelativistic electron acceleration during the second geomagnetic storm. While 3.4 MeV electrons could be further enhanced during the second geomagnetic storm. During the recovery phase of the second small or moderate geomagnetic storm, ultrarelativistic electrons with higher cutoff energies (≥ 5.2 MeV) and higher fluxes are observed. Compared to an isolated geomagnetic storm with similar solar wind and geomagnetic conditions, ultrarelativistic electrons with higher cutoff energies and higher fluxes are observed during the recovery phase of the second geomagnetic storm. We also find that continuous geomagnetic storm events may contribute even more to enhancements of ultrarelativistic electrons in the outer radiation belt if the second geomagnetic storm is a small or moderate storm with a low solar wind dynamic pressure and short-duration main phase. These can help us to further understand the evolutions of ultrarelativistic electrons in the Earth’s outer radiation belt during geomagnetic storms.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3