Affiliation:
1. Institute of Geosciences Johannes Gutenberg University Mainz Germany
2. TeMaS—Terrestrial Magmatic Systems Research Area Johannes Gutenberg University Mainz Germany
3. Department of Physics and Astronomy “Augusto Righi” Alma Mater Studiorum Bologna Italy
4. Department of Physics University of Salerno Fisciano Italy
5. Istituto Nazionale di Geofisica e Vulcanologia Sezione di Napoli—Osservatorio Vesuviano Napoli Italy
Abstract
AbstractThe spatiotemporal relationship between geophysical, environmental, and geochemical responses during volcanic unrest is essentially unknown, making their joint use and interpretation for eruption forecasting challenging. Here, Empirical Orthogonal Functions analysis applied to GPS data allows the separation of the dominant deep‐sourced inflation from environmentally controlled signals associated with extension at Campi Flegrei caldera. This separation bridges the gap between deformation, seismic and geochemical responses, clarifying the processes underlying the ongoing volcanic unrest. Persistent meteoric forcing during the 2017–2018 hydrological year changed the decadal trend of seismic energy and secondary deformation components, pairing their spatial patterns. The result was a block in the carbon dioxide released in 2018 at Solfatara, the primary stress‐release valve at the caldera. The subsequent overpressure weakened the fractured eastern caldera, opening pathways for deep, hot materials to reach the surface. Our results give insight into how environmental forcing can favor volcanic unrest in pressurized calderas.
Publisher
American Geophysical Union (AGU)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献