Characterization of Icy Moon Hydrospheres Through Joint Inversion of Gravity and Magnetic Field Measurements

Author:

Petricca Flavio1ORCID,Genova Antonio1ORCID,Castillo‐Rogez Julie C.2ORCID,Styczinski Marshall J.2ORCID,Cochrane Corey J.2ORCID,Vance Steven D.2ORCID

Affiliation:

1. Department of Mechanical and Aerospace Engineering Sapienza University of Rome Rome Italy

2. Jet Propulsion Laboratory California Institute of Technology Pasadena CA USA

Abstract

AbstractSeveral bodies in the outer solar system are believed to host liquid water oceans underneath their icy surfaces. Knowledge of the hydrosphere properties is essential for understanding and assessing their habitability. We introduce a methodology based on Bayesian inference that enables a robust characterization of the hydrosphere through the combination of gravity and magnetic induction data. The interior models retrieved are consistent with the geophysical observations, leading to probability distributions for the relevant interior properties. We apply this joint inversion approach to constrain Europa's hydrosphere with gravity and magnetic field measurements acquired by the Galileo mission. Our results indicate that the combination of these datasets allows simultaneous constraints on the ice shell and ocean thickness, enhancing our knowledge of the hydrosphere structure. This methodology is valuable for synergistic interior science investigations of several missions in development or in planning, including Europa Clipper, JUICE and the Uranus Orbiter and Probe.

Publisher

American Geophysical Union (AGU)

Subject

General Earth and Planetary Sciences,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3