The Dependence of Climate Sensitivity on the Meridional Distribution of Radiative Forcing

Author:

Zhang Bosong1ORCID,Zhao Ming2ORCID,He Haozhe3ORCID,Soden Brian J.3ORCID,Tan Zhihong1ORCID,Xiang Baoqiang2ORCID,Wang Chenggong1ORCID

Affiliation:

1. Program in Atmospheric and Oceanic Sciences Princeton University Princeton NJ USA

2. NOAA/Geophysical Fluid Dynamics Laboratory Princeton NJ USA

3. Rosenstiel School of Marine, Atmospheric and Earth Science University of Miami Miami FL USA

Abstract

AbstractThis study investigates how climate sensitivity depends upon the spatial pattern of radiative forcing. Sensitivity experiments using a coupled ocean‐atmosphere model were conducted by adding anomalous incoming solar radiation over the entire globe, Northern Hemisphere mid‐latitudes, Southern Ocean, and tropics. The varied forcing patterns led to highly divergent climate sensitivities. Specifically, the climate is nearly twice as sensitive to Southern Ocean forcing as tropical forcing. Strong coupling between the surface and free troposphere in the tropics increases the inversion strength, leading to smaller cloud feedback in the tropical forcing experiments. In contrast, the extratropics exhibit weaker coupling, a decrease or near‐zero change in the inversion strength, and strong positive cloud feedback. These results contrast with the conventional SST‐pattern effect in which tropical surface temperature changes regulate climate sensitivity. They also have important implications for other potentially asymmetric forcings, such as those from geoengineering, volcanic eruptions, and paleoclimatic changes.

Funder

National Oceanic and Atmospheric Administration

U.S. Department of Energy

Publisher

American Geophysical Union (AGU)

Subject

General Earth and Planetary Sciences,Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Green's Function Model Intercomparison Project (GFMIP) Protocol;Journal of Advances in Modeling Earth Systems;2024-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3