Where the White Continent Is Blue: Deep Learning Locates Bare Ice in Antarctica

Author:

Tollenaar Veronica12ORCID,Zekollari Harry1345ORCID,Pattyn Frank1ORCID,Rußwurm Marc26ORCID,Kellenberger Benjamin7ORCID,Lhermitte Stef89ORCID,Izeboud Maaike9ORCID,Tuia Devis2ORCID

Affiliation:

1. Laboratoire de Glaciologie Université libre de Bruxelles Brussels Belgium

2. Environmental Computational Science and Earth Observation Laboratory École Polytechnique Fédérale de Lausanne (EPFL) Sion Switzerland

3. Laboratory of Hydraulics, Hydrology and Glaciology (VAW) ETH Zürich Zurich Switzerland

4. Swiss Federal Institute for Forest Snow and Landscape Research (WSL) Birmensdorf Switzerland

5. Department of Water and Climate Vrije Universiteit Brussel Brussels Belgium

6. Laboratory of Geo‐information Science and Remote Sensing Wageningen University Wageningen The Netherlands

7. Department of Ecology and Evolutionary Biology Yale University New Haven CT USA

8. Department of Earth and Environmental Sciences KU Leuven Leuven Belgium

9. Department of Geoscience and Remote Sensing Delft University of Technology Delft The Netherlands

Abstract

AbstractIn some areas of Antarctica, blue‐colored bare ice is exposed at the surface. These blue ice areas (BIAs) can trap meteorites or old ice and are vital for understanding the climatic history. By combining multi‐sensor remote sensing data (MODIS, RADARSAT‐2, and TanDEM‐X) in a deep learning framework, we map blue ice across the continent at 200‐m resolution. We use a novel methodology for image segmentation with “noisy” labels to learn an underlying “clean” pattern with a neural network. In total, BIAs cover ca. 140,000 km2 (∼1%) of Antarctica, of which nearly 50% located within 20 km of the grounding line. There, the low albedo of blue ice enhances melt‐water production and its mapping is crucial for mass balance studies that determine the stability of the ice sheet. Moreover, the map provides input for fieldwork missions and can act as constraint for other geophysical mapping efforts.

Publisher

American Geophysical Union (AGU)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Three-dimensional dynamic monitoring of crevasses based on deep learning and surface elevation reconstruction methods;International Journal of Applied Earth Observation and Geoinformation;2024-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3