Environmental drivers of circum-Antarctic glacier and ice shelf front retreat over the last two decades

Author:

Baumhoer Celia A.ORCID,Dietz Andreas J.,Kneisel Christof,Paeth Heiko,Kuenzer Claudia

Abstract

Abstract. The safety band of Antarctica, consisting of floating glacier tongues and ice shelves, buttresses ice discharge of the Antarctic Ice Sheet. Recent disintegration events of ice shelves along with glacier retreat indicate a weakening of this important safety band. Predicting calving front retreat is a real challenge due to complex ice dynamics in a data-scarce environment that are unique for each ice shelf and glacier. We explore the extent to which easy-to-access remote sensing and modeling data can help to define environmental conditions leading to calving front retreat. For the first time, we present a circum-Antarctic record of glacier and ice shelf front change over the last two decades in combination with environmental variables such as air temperature, sea ice days, snowmelt, sea surface temperature, and wind direction. We find that the Antarctic Ice Sheet area decreased by −29 618 ± 1193 km2 in extent between 1997–2008 and gained an area of 7108 ± 1029 km2 between 2009 and 2018. Retreat concentrated along the Antarctic Peninsula and West Antarctica including the biggest ice shelves (Ross and Ronne). In several cases, glacier and ice shelf retreat occurred in conjunction with one or several changes in environmental variables. Decreasing sea ice days, intense snowmelt, weakening easterlies, and relative changes in sea surface temperature were identified as enabling factors for retreat. In contrast, relative increases in mean air temperature did not correlate with calving front retreat. For future studies a more appropriate measure for atmospheric forcing should be considered, including above-zero-degree days and temperature extreme events. To better understand drivers of glacier and ice shelf retreat, it is critical to analyze the magnitude of basal melt through the intrusion of warm Circumpolar Deep Water that is driven by strengthening westerlies and to further assess surface hydrology processes such as meltwater ponding, runoff, and lake drainage.

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Water Science and Technology

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Out-of-the-box calving-front detection method using deep learning;The Cryosphere;2023-11-24

2. Annual mass budget of Antarctic ice shelves from 1997 to 2021;Science Advances;2023-10-13

3. Antarctica and the Southern Ocean;Bulletin of the American Meteorological Society;2023-09

4. Calving, ice flow, and thickness of outlet glaciers controlled by land-fast sea ice in Lützow-Holm Bay, East Antarctica;Journal of Glaciology;2023-08-14

5. Iceberg Calving: Regimes and Transitions;Annual Review of Earth and Planetary Sciences;2023-05-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3