Strengthened ENSO Amplitude Contributed to Regime Shift in the Hadley Circulation

Author:

Feng Juan1ORCID,Wang Shuang1ORCID,Li Jianping23ORCID

Affiliation:

1. State Key Laboratory of Remote Sensing Science Faculty of Geographical Science Beijing Normal University Beijing China

2. Frontiers Science Center for Deep Ocean Multi‐spheres and Earth System Key Laboratory of Physical Oceanography Academy of the Future Ocean Ocean University of China Qingdao China

3. Laoshan Laboratory Qingdao China

Abstract

AbstractUnderstanding the variability in the Hadley circulation (HC) changes is crucial for understanding ocean‐atmosphere interactions. In this study, the variability in the boreal winter HC in the last 4 decades is explored using multiple reanalyzes and model simulations. The results show that regime shift occurred in the leading mode of HC variability. The primary mode of the recent HC is dominated by an equatorially symmetrical pattern, which was considered the second mode in previous studies. The regime shift in HC variability is mainly due to the El Niño–Southern Oscillation (ENSO), which explains both the spatiotemporal variation and formation of HC variability. Moreover, the abilities of the models to reproduce HC variability is subject to their ability to simulate ENSO variability, suggesting that the ENSO has become a more important modulator of the HC variability in recent decades, and additional research is warranted to evaluate future climate changes and potential effects on the HC.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Fundamental Research Funds for the Central Universities

State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3