Thousand‐Kilometer DAS Array Reveals an Uncatalogued Magnitude‐5 Dynamically Triggered Event After the 2023 Turkey Earthquake

Author:

Zhai Qiushi1ORCID,Zhan Zhongwen1ORCID,Chavarria J. Andres2

Affiliation:

1. Seismological Laboratory California Institute of Technology Pasadena CA USA

2. LUNA‐OptaSense Chino CA USA

Abstract

AbstractLarge earthquakes can trigger smaller seismic events, even at significant distances. The process of earthquake triggering offers valuable insights into the evolution of local stress states, deepening our understanding of the mechanisms of earthquake nucleation. However, our ability to detect these triggered events is limited by the quality and spatial density of local seismometers, posing significant challenges if the triggered event is hidden in the signal of a nearby larger earthquake. Distributed acoustic sensing (DAS) has the potential to enhance the monitoring capability of triggered earthquakes through its high spatial sampling and large spatial coverage. Here, we report on an uncatalogued magnitude (M) 5.1 event in northeast Turkey, which was likely dynamically and instantaneously triggered by the 2023 M7.8 earthquake in southeast Turkey, located 400 km away. This event was initially discovered on ∼1,100 km of active DAS recordings that are part of an 1,850‐km linear array. Subsequent validation using local seismometers confirmed the event's precise time, location, and magnitude. Interestingly, this dynamically triggered event exhibited precursory signals preceding its P arrivals on the nearby seismometers. It can be interpreted as the signal from other nearby, uncatalogued, smaller triggered events. Our results highlight the potential of high‐spatial‐density DAS in enhancing the local‐scale detection and the detailed analysis of earthquake triggering.

Funder

National Science Foundation

U.S. Geological Survey

Gordon and Betty Moore Foundation

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3