The Role of Video Cameras and Emerging Technologies in Disaster Response to Increase Sustainability of Societies: Insights on the 2023 Türkiye–Syria Earthquake

Author:

Oliveira Carlos Sousa1ORCID,Ferreira Mónica Amaral1ORCID,O’Neill Hugo2

Affiliation:

1. CERIS, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal

2. Independent Researcher, 1049-001 Lisboa, Portugal

Abstract

New technologies are being used to facilitate the recognition process during and after earthquakes. These advanced tools are essential to keep track of what is left from of the destruction suffered by the built stock. Among the new technologies are video recordings captured during seismic events, footage from drones, and satellite imagery acquired before and after the event. This review paper presents a series of examples collected from the 2023 Türkiye–Syria earthquakes to illustrate how these new technologies offer a unique and efficient way to capture, document, and transfer information among experts in seismology, earthquake engineering, and disaster management. Whenever possible, these examples are accompanied by simple qualitative explanations to enhance understanding. To demonstrate the potential of video cameras and drone imagery for quantitative analysis, in addition to the various simple examples provided, two case studies are provided—one on road blockages, and another on intensity assessment and wave attenuation as observed in video cameras. These technologies are critical and merit considerable focus, particularly video cameras, which have not received much attention recently, on helping to understand seismic wave passage and their impact on the built environment. Enhancing our use of video cameras in this context can significantly contribute to the sustainability and resilience of our society. With the rapid advancement of image analysis, we advocate for a collaborative platform for accessing and utilizing imagery materials, aiding current and future generations in analysing the causes of such tragedies.

Funder

Portuguese Foundation for Science and Technology’s

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3