Affiliation:
1. University of California San Diego CA USA
2. Now at University of Liverpool Liverpool UK
3. Occidental College Los Angeles CA USA
4. Now at California Water Science Center US Geological Survey Santa Maria CA USA
5. University of Hawai'i at Manōa Honolulu HI USA
6. Oregon State University Corvallis OR USA
Abstract
AbstractA foundational assumption in paleomagnetism is that the Earth's magnetic field behaves as a geocentric axial dipole (GAD) when averaged over sufficient timescales. Compilations of directional data averaged over the past 5 Ma yield a distribution largely compatible with GAD, but the distribution of paleointensity data over this timescale is incompatible. Reasons for the failure of GAD include: (a) Arbitrary “selection criteria” to eliminate “unreliable” data vary among studies, so the paleointensity database may include biased results. (b) The age distribution of existing paleointensity data varies with latitude, so different latitudinal averages represent different time periods. (c) The time‐averaged field could be truly non‐dipolar. Here, we present a consistent methodology for analyzing paleointensity results and comparing time‐averaged paleointensities from different studies. We apply it to data from Plio/Pleistocene Hawai'ian igneous rocks, sampled from fine‐grained, quickly cooled material (lava flow tops, dike margins and scoria cones) and subjected to the IZZI‐Thellier technique; the data were analyzed using the Bias Corrected Estimation of Paleointensity method of Cych et al. (2021, https://doi.org/10.1029/2021GC009755), which produces accurate paleointensity estimates without arbitrarily excluding specimens from the analysis. We constructed a paleointensity curve for Hawai'i over the Plio/Pleistocene using the method of Livermore et al. (2018, https://doi.org/10.1093/gji/ggy383), which accounts for the age distribution of data. We demonstrate that even with the large uncertainties associated with obtaining a mean field from temporally sparse data, our average paleointensities obtained from Hawai'i and Antarctica (reanalyzed from Asefaw et al., 2021, https://doi.org/10.1029/2020JB020834) are not GAD‐like from 0 to 1.5 Ma but may be prior to that.
Funder
National Science Foundation
Publisher
American Geophysical Union (AGU)
Subject
Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geochemistry and Petrology,Geophysics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献