A Bootstrap Common Mean Direction Test

Author:

Heslop David1ORCID,Scealy Janice L.2,Wood Andrew T. A.2,Tauxe Lisa3ORCID,Roberts Andrew P.1ORCID

Affiliation:

1. Research School of Earth Sciences Australian National University Canberra ACT Australia

2. Research School of Finance, Actuarial Studies and Statistics Australian National University Canberra ACT Australia

3. Scripps Institution of Oceanography UC San Diego La Jolla CA USA

Abstract

AbstractPaleomagnetic statistical inference is underpinned by a family of parametric null hypothesis tests. In many cases, however, paleomagnetic data do not meet the distributional assumptions of these tests, which can lead to spurious inferences. Earlier studies have proposed the bootstrap as a nonparametric alternative for paleomagnetic analysis, which can be applied even when the distributional form of the data is unknown. Key among these approaches is the bootstrap test for a common mean direction, which relies on assessment of the overlap of estimated confidence regions. In its current form, the bootstrap test for a common mean paleomagnetic direction does not consider a null hypothesis and can yield outcomes that cannot be interpreted in terms of a statistical significance level. To resolve these issues, we use recent advances to place such bootstrap tests within a null hypothesis significance testing framework, and unify them with the existing family of paleomagnetic statistical tests. Furthermore, using numerical experiments we demonstrate the applicability of such a nonparametric approach to moderately sized paleomagnetic data sets typical of modern and legacy studies. Finally, we demonstrate how a confidence region can be estimated for the common mean of two sets of directions and how known directions, such as the expected field produced by a geocentric axial dipole, can be compared to that mean.

Funder

Australian Research Council

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geochemistry and Petrology,Geophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3