Affiliation:
1. Research School of Earth Sciences Australian National University Canberra ACT Australia
2. Research School of Finance, Actuarial Studies and Statistics Australian National University Canberra ACT Australia
3. Scripps Institution of Oceanography UC San Diego La Jolla CA USA
Abstract
AbstractPaleomagnetic statistical inference is underpinned by a family of parametric null hypothesis tests. In many cases, however, paleomagnetic data do not meet the distributional assumptions of these tests, which can lead to spurious inferences. Earlier studies have proposed the bootstrap as a nonparametric alternative for paleomagnetic analysis, which can be applied even when the distributional form of the data is unknown. Key among these approaches is the bootstrap test for a common mean direction, which relies on assessment of the overlap of estimated confidence regions. In its current form, the bootstrap test for a common mean paleomagnetic direction does not consider a null hypothesis and can yield outcomes that cannot be interpreted in terms of a statistical significance level. To resolve these issues, we use recent advances to place such bootstrap tests within a null hypothesis significance testing framework, and unify them with the existing family of paleomagnetic statistical tests. Furthermore, using numerical experiments we demonstrate the applicability of such a nonparametric approach to moderately sized paleomagnetic data sets typical of modern and legacy studies. Finally, we demonstrate how a confidence region can be estimated for the common mean of two sets of directions and how known directions, such as the expected field produced by a geocentric axial dipole, can be compared to that mean.
Funder
Australian Research Council
Publisher
American Geophysical Union (AGU)
Subject
Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geochemistry and Petrology,Geophysics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献