Dispersion and Aging of Volcanic Aerosols After the La Soufrière Eruption in April 2021

Author:

Bruckert J.1ORCID,Hirsch L.2,Horváth Á.3ORCID,Kahn R. A.4ORCID,Kölling T.2,Muser L. O.15ORCID,Timmreck C.2ORCID,Vogel H.1ORCID,Wallis S.6ORCID,Hoshyaripour G. A.1ORCID

Affiliation:

1. Institute of Meteorology and Climate Research Karlsruhe Institute of Technology (KIT) Karlsruhe Germany

2. Max‐Planck‐Institut für Meteorologie Hamburg Germany

3. Meteorological Institute Universität Hamburg Hamburg Germany

4. Earth Science Division NASA Goddard Space Flight Center MD Greenbelt USA

5. Now at Alfred Wegener Institute of Polar and Marine Research (AWI) Bremerhaven Germany

6. Institute of Physics University of Greifswald Greifswald Germany

Abstract

AbstractVolcanic aerosols change the atmospheric composition and thereby affect weather and climate. Aerosol dynamic processes such as nucleation, condensation, and coagulation modify the shape, size, and mass of aerosol particles, which influence their atmospheric lifetime and radiative properties. Nevertheless, most models omit these processes for ash particles. In this work, we explore the ash aerosol aging and sulfate production during the first 4 days following the 2021 La Soufrière (St. Vincent) eruption with the ICON‐ART model (ICOsahedral Nonhydrostatic model with Aerosol and Reactive Trace gases). Online coupling of ICON‐ART with a one‐dimensional volcanic plume model calculates volcanic emission, which makes it possible to resolve the different eruption phases of the noncontinuous La Soufrière eruption. We compared our simulated aerosol distribution and composition with observations from the Cloud‐Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument, the Multiangle Imaging SpectroRadiometer (MISR) Research Aerosol (RA) Algorithm, and the Barbados Cloud Observatory (BCO). We show that online coupling is essential to adequately model the emissions and plume development close to the volcano. The modeled aerosol aging is in very good agreement with observations from MISR near the emission source and with CALIOP at larger distances. Furthermore, particle aging occurs faster in the troposphere than in the stratosphere due to the availability of water vapor and OH, but a layer of coated ash appears at the plume top due to faster oxidation of SO2 and lofting by aerosol‐radiation interaction. This paper gives the first direct comparison of aerosol aging in volcanic eruption plumes between simulations and observations.

Funder

Deutsche Forschungsgemeinschaft

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3