In situ measurements of perturbations to stratospheric aerosol and modeled ozone and radiative impacts following the 2021 La Soufrière eruption

Author:

Li YaoweiORCID,Pedersen CoreyORCID,Dykema John,Vernier Jean-Paul,Vattioni Sandro,Pandit Amit KumarORCID,Stenke AndreaORCID,Asher Elizabeth,Thornberry TroyORCID,Todt Michael A.ORCID,Bui Thao Paul,Dean-Day Jonathan,Keutsch Frank N.

Abstract

Abstract. Stratospheric aerosols play important roles in Earth's radiative budget and in heterogeneous chemistry. Volcanic eruptions modulate the stratospheric aerosol layer by injecting particles and particle precursors like sulfur dioxide (SO2) into the stratosphere. Beginning on 9 April 2021, La Soufrière erupted, injecting SO2 into the tropical upper troposphere and lower stratosphere, yielding a peak SO2 loading of 0.3–0.4 Tg. The resulting volcanic aerosol plumes dispersed predominately over the Northern Hemisphere (NH), as indicated by the CALIOP/CALIPSO satellite observations and model simulations. From June to August 2021 and May to July 2022, the NASA ER-2 high-altitude aircraft extensively sampled the stratospheric aerosol layer over the continental United States during the Dynamics and Chemistry of the Summer Stratosphere (DCOTSS) mission. These in situ aerosol measurements provide detailed insights into the number concentration, size distribution, and spatiotemporal variations of particles within volcanic plumes. Notably, aerosol surface area density and number density in 2021 were enhanced by a factor of 2–4 between 380–500 K potential temperature compared to the 2022 DCOTSS observations, which were minimally influenced by volcanic activity. Within the volcanic plume, the observed aerosol number density exhibited significant meridional and zonal variations, while the mode and shape of aerosol size distributions did not vary. The La Soufrière eruption led to an increase in the number concentration of small particles (<400 nm), resulting in a smaller aerosol effective diameter during the summer of 2021 compared to the baseline conditions in the summer of 2022, as observed in regular ER-2 profiles over Salina, Kansas. A similar reduction in aerosol effective diameter was not observed in ER-2 profiles over Palmdale, California, possibly due to the values that were already smaller in that region during the limited sampling period in 2022. Additionally, we modeled the eruption with the SOCOL-AERv2 aerosol–chemistry–climate model. The modeled aerosol enhancement aligned well with DCOTSS observations, although the direct comparison was complicated by issues related to the model's background aerosol burden. This study indicates that the La Soufrière eruption contributed approximately 0.6 % to Arctic and Antarctic ozone column depletion in both 2021 and 2022, which is well within the range of natural variability. The modeled top-of-atmosphere 1-year global average radiative forcing was −0.08 W m−2 clear-sky and −0.04 W m−2 all-sky. The radiative effects were concentrated in the tropics and NH midlatitudes and diminished to near-baseline levels after 1 year.

Funder

National Aeronautics and Space Administration

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference54 articles.

1. Andersson, S. M., Martinsson, B. G., Vernier, J.-P., Friberg, J., Brenninkmeijer, C. A., Hermann, M., Van Velthoven, P. F., and Zahn, A.: Significant radiative impact of volcanic aerosol in the lowermost stratosphere, Nat. Commun., 6, 7692, 2015.

2. Bönisch, H., Engel, A., Birner, Th., Hoor, P., Tarasick, D. W., and Ray, E. A.: On the structural changes in the Brewer-Dobson circulation after 2000, Atmos. Chem. Phys., 11, 3937–3948, https://doi.org/10.5194/acp-11-3937-2011, 2011.

3. Bruckert, J., Hirsch, L., Horváth, Á., Kahn, R., Kölling, T., Muser, L., Timmreck, C., Vogel, H., Wallis, S., and Hoshyaripour, G.: Dispersion and aging of volcanic aerosols after the La Soufrière eruption in April 2021, J. Geophys. Res.-Atmos., e2022JD037694, https://doi.org/10.1029/2022JD037694, 2023.

4. Carboni, E., Grainger, R., Walker, J., Dudhia, A., and Siddans, R.: A new scheme for sulphur dioxide retrieval from IASI measurements: application to the Eyjafjallajökull eruption of April and May 2010, Atmos. Chem. Phys., 12, 11417–11434, https://doi.org/10.5194/acp-12-11417-2012, 2012.

5. Charlton-Perez, A. J., Baldwin, M. P., Birner, T., Black, R. X., Butler, A. H., Calvo, N., Davis, N. A., Gerber, E. P., Gillett, N., Hardiman, S., Kim, J., Krüger, K., Lee, Y.-Y., Manzini, E., McDaniel, B. A., Polvani, L., Reichler, T., Shaw, T. A., Sigmond, M., Son, S.-W., Toohey, M., Wilcox, L., Yoden, S., Christiansen, B., Lott, F., Shindell, D., Yukimoto, S., and Watanabe, S.: On the lack of stratospheric dynamical variability in low-top versions of the CMIP5 models, J. Geophys. Res.-Atmos., 118, 2494–2505, https://doi.org/10.1002/jgrd.50125, 2013.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3