Exploring the Meteorological Impacts of Surface and Rooftop Heat Mitigation Strategies Over a Tropical City

Author:

Khan Ansar1ORCID,Khorat Samiran2ORCID,Doan Quang‐Van3ORCID,Khatun Rupali2,Das Debashish4ORCID,Hamdi Rafiq5,Carlosena Laura6ORCID,Santamouris Mattheos7,Georgescu Matei8,Niyogi Dev910ORCID

Affiliation:

1. Department of Geography Lalbaba College University of Calcutta Kolkata India

2. School of Environmental Studies Jadavpur University Kolkata India

3. Centre for Computational Sciences University of Tsukuba Tsukuba Japan

4. Department of Architecture Jadavpur University Kolkata India

5. Royal Meteorological Institute of Belgium Brussels Belgium

6. Department of Engineering Public University of Navarre (UPNA) Pamplona Spain

7. Faculty of Built Environment University of New South Wales Sydney NSW Australia

8. School of Geographical Sciences and Urban Planning Arizona State University Tempe AZ USA

9. Department of Geological Sciences Jackson School of Geosciences The University of Texas at Austin Austin TX USA

10. Department of Civil, Architectural, and Environmental Engineering The University of Texas at Austin Austin TX USA

Abstract

AbstractDifferent heat mitigation technologies have been developed to improve the thermal environment in cities. However, the regional impacts of such technologies, especially in the context of a tropical city, remain unclear. The deployment of heat mitigation technologies at city‐scale can change the radiation balance, advective flow, and energy balance between urban areas and the overlying atmosphere. We used the mesoscale Weather Research and Forecasting model coupled with a physically based single‐layer urban canopy model to assess the impacts of five different heat mitigation technologies on surface energy balance, standard surface meteorological fields, and planetary boundary layer (PBL) dynamics for premonsoon typical hot summer days over a tropical coastal city in the month of April in 2018, 2019, and 2020. Results indicate that the regional impacts of cool materials (CMs), super‐cool broadband radiative coolers, green roofs (GRs), vegetation fraction change, and a combination of CMs and GRs (i.e., “Cool city (CC)”) on the lower atmosphere are different at diurnal scale. Results showed that super‐cool materials have the maximum potential of ambient temperature reduction of 1.6°C during peak hour (14:00 LT) compared to other technologies in the study. During the daytime hours, the PBL height was considerably lower than the reference scenario with no implementation of strategies by 700 m for super‐cool materials and 500 m for both CMs and CC cases; however, the green roofing system underwent nominal changes over the urban area. During the nighttime hours, the PBL height increased by CMs and the CC strategies compared to the reference scenario, but minimal changes were evident for super‐cool materials. The changes of temperature on the vertical profile of the heat mitigation implemented city reveal a stable PBL over the urban domain and a reduction of the vertical mixing associated with a pollution dome. This would lead to crossover phenomena above the PBL due to the decrease in vertical wind speed. Therefore, assessing the coupled regional impact of urban heat mitigation over the lower atmosphere at city‐scale is urgent for sustainable urban planning.

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geophysics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3