Analyzing the Land Surface Temperature Response to Urban Morphological Changes: A Case Study of the Chengdu–Chongqing Urban Agglomeration

Author:

Tian Yuhang12,Xie Zhenghui12ORCID,Xie Jinbo1,Jia Binghao1ORCID,Chen Si3,Qin Peihua1ORCID,Li Ruichao1,Wang Longhuan1,Yan Heng12,You Yanbin12,Liu Bin4ORCID

Affiliation:

1. State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics Institute of Atmospheric Physics Chinese Academy of Sciences Beijing China

2. College of Earth and Planetary Sciences University of Chinese Academy of Sciences Beijing China

3. Research Institute Qianhai Reinsurance Company Ltd. Shenzhen China

4. School of Software Engineering Chengdu University of Information Technology Chengdu China

Abstract

AbstractUrban morphological change impacts the land surface temperature (LST) through modifying the net radiation, convective heat transfer, evapotranspiration, and heat storage on the ground. It is essential to quantify the contributions of these physical changes on LST changes. In this work, we conduct simulations using a weather research and forecasting model for the Chengdu–Chongqing urban agglomeration to identify causes of LST changes due to urban morphological changes through different morphological parameters: the aspect ratio, building plan area fraction, and average building height. A new method is proposed and used to quantify the contribution of these physical changes on LST changes. The results show as the aspect ratio increases, an increase of the average LST is induced by variations in radiation, and daytime cooling and nighttime warming are induced by variations in heat storage. There is warming associated with an increase in the building plan area fraction, which is mostly caused by a decrease in the efficiency of the long‐wave radiant heat emitted from the surface to the atmosphere. We also find that an increase in the average building height enhance the efficiency of convective heat transfer, which results in cooling. These results are important for the management of urban thermal environments.

Funder

National Natural Science Foundation of China

Chinese Academy of Sciences

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3