Revealing Their True Stripes: Mg/Ca Banding in the Paleogene Planktonic Foraminifera GenusMorozovellaand Implications for Paleothermometry

Author:

John Eleanor H.1ORCID,Staudigel Philip T.12ORCID,Buse Benjamin3,Lear Caroline H.1ORCID,Pearson Paul N.1ORCID,Slater Sophie M.1

Affiliation:

1. School of Earth and Environmental Sciences Cardiff University Cardiff UK

2. Institut für Geowissenschaften Goethe‐Universität Frankfurt Frankfurt am Main Germany

3. School of Earth Sciences University of Bristol Bristol UK

Abstract

AbstractThe Mg/Ca ratio of foraminiferal calcite is a widely used empirical proxy for ocean temperature. Foraminiferal Mg/Ca‐temperature relationships are based on extant species and are species‐specific, introducing uncertainty when applying them to the fossil tests of extinct groups. Many modern species show remarkable heterogeneity in their intra‐test Mg distributions, typically due to the presence of high Mg bands, which have a biological origin. Importantly, banding patterns differ between species, which could affect Mg/Ca‐temperature relationships. Few studies have looked at intra‐test variability in Mg/Ca ratios in extinct species of foraminifera, despite the obvious implications for paleothermometry. We used electron probe microanalysis (EPMA) to investigate intra‐test Mg distributions in the fossil tests of two species of planktonic foraminifera from the extinct muricate mixed‐layer‐dwelling genusMorozovella, commonly used in Paleogene sea surface temperature reconstructions. BothM.aragonensisandM.cratershow striking Mg banding patterns with multiple high and low Mg/Ca band pairs throughout the test wall in all chambers. The intra‐test Mg variability inM.aragonensisandM.crateris similar to that in modern species widely used in paleoclimate reconstructions and banding patterns are consistent with published growth models for modern forms, albeit with subtle differences. The presence of Mg bands supports the application of Mg/Ca‐palaeothermometry in extinctMorozovellaspecies as well as the utility of EPMA for examining preservation of foraminifera tests in paleoclimatological studies. However, we emphasize the importance of rigorous assessments of inter‐ and intra‐test Mg variability when using microanalytical techniques for foraminiferal Mg/Ca paleothermometry.

Funder

Natural Environment Research Council

Publisher

American Geophysical Union (AGU)

Subject

Paleontology,Atmospheric Science,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3